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Abstract

We present a new and interesting application for networks that enforce a strict
upper bound on their Lipschitz constant: geometrical fitting through differentiable
estimation of the Earth Mover’s Distance. We focus specifically on the field of
high-energy physics, where it has been shown that a metric for the space of particle-
collider events can be defined with the Earth Mover’s Distance, referred to in this
context as Energy Mover’s Distance (EMD). This metrization has the potential
to revolutionize data-driven collider phenomenology. The work presented here
represents a major step towards realizing this goal by providing a differentiable
way of directly calculating the EMD. We show how the flexibility that our approach
enables can be used to develop novel clustering algorithms.

1 Introduction

The Earth Mover’s Distance, otherwise referred to as Wasserstein-1 distance, is a metric defined
between two probability measures. In the field of high-energy particle physics, a modified version of
the Earth Mover’s distance, the Energy Mover’s Distance (EMD), serves as a metric for the space
of collider events by defining the work required to rearrange the radiation pattern of one event into
another Komiske et al. [2019]. In particular, the EMD is intimately connected to the structure of
infrared- and collinear-safe observables used in the ubiquitous task of clustering particles into jets
Komiske et al. [2020], and is foundational in the SHAPER tool for developing geometric collider
observables Gambhir et al. [2022].

Recently, a novel neural architecture was developed that enforces an exact upper bound on the
Lipschitz constant of the model by constraining the norm of its weights in a minimal way, resulting in
higher expressiveness than other methods Kitouni et al. [2021], Anil et al. [2019]. Here, we employ
this architecture—leveraging its improved expressiveness for 1-Lipschitz continuous networks—to
replace the ϵ-Sinkhorn estimation of the EMD in SHAPER Feydy et al. [2018], Gambhir et al. [2022]
by directly calculating the EMD using the Kantorovic-Rubenstein (KR) dual formulation. The KR
duality casts the optimal transport problem as an optimization over the space of 1-Lipschitz functions,
which we parameterize with dense neural networks using the architecture from Kitouni et al. [2021].
With small modifications to the KR dual formulation, we are able to reliably and accurately obtain the
EMD and Kantorovic potential in a differentiable way, without any ϵ approximations. This makes it
possible to run gradient-based optimization procedures over the exact EMD (see Fig. 1). In addition,
we expect these improvements could potentially have a major impact on jet studies at the future
Electron-Ion Collider, where traditional clustering methods are not optimal Arratia et al. [2021], and
more broadly in optimal transport problems.
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Figure 1: Fitting three synthetic clusters (green) with three circles (red) using NEEMo (see Sec. 3).
The heatmap is the Kantorovic potential, parameterized as a Lipschitz-bounded network, which
induces forces on the circles (shown as arrows) that drive them into perfect alignment with the target
distribution (only a few steps in the evolution of the fit are shown).

2 Lipschitz Networks and the Energy Mover’s Distance

Lipschitz Networks Fully connected networks can be Lipschitz bounded by constraining the matrix
norm of all weights Kitouni et al. [2021], Gouk et al. [2020], Miyato et al. [2018]. Constraints with
respect to a particular Lp norm will be denoted as Lipp. We start with a model f(x) that is Lipp with
Lipschitz constant λ i.e., ∀x,y ∈ Rn:

|f(x)− f(y)| ≤ λ∥x− y∥p . (1)

Without loss of generality, we take λ = 1 (rescaling the inputs would be equivalent to changing λ).
We recursively define the layer l of the fully connected network of depth D with activation σ as

zl = W lσ(zl−1) + bl, (2)

where z0 = x is the input and f(x) = zD is the output of the neural network. We have that f(x)
satisfies equation 1 if

∥W i∥∞ ≤ 1 when 2 ≤ i ≤ D and ||W 1||p,∞ ≤ 1 (3)

and σ has a Lipschitz constant less than or equal to 1. Here, ||W ||p,q denotes the operator norm
with norm Lp in the domain and Lq in the co-domain. It is shown in Anil et al. [2019] that when
using the GroupSort activation, f(x) can approximate any Lipp function arbitrarily well, making
weight-normed networks universal approximators. An implementation of the weight constraint along
with a number of examples is provided in https://github.com/niklasnolte/MonotOneNorm.

Energy Mover’s Distance The EMD is a metric between probability measures P and Q. Using the
standard Wasserstein-metric notation, the EMD is defined as

EMD(P,Q) = inf
γ∈Π(P,Q)

E(x,y)∼γ

[
||x− y||2

]
, (4)

where Π(P,Q) is the set of all joint probability measures whose marginals are P and Q. The EMD
optimization problem can be cast as an optimization over Lipschitz continuous functions using the
Kantorovich-Rubinstein duality:

EMD(P,Q) = sup
||f ||L≤1

Ex∼P
[
f(x)

]
− Ex∼Q

[
f(x)

]
, (5)

where f is Lip2 continuous, i.e., ||∇f ||2 ≤ 1. In high-energy particle collisions, the EMD is defined
by using the energies of individual particles in place of probabilities, with their momentum directional
coordinates representing the supports of the probability distribution. For more details, including on
how unequal total energies are handled, see Komiske et al. [2019]. By performing optimizations over
a constrained set of Ps, one can use the EMD to define observables over Q.
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Figure 2: Training procedure to fit a parameterized shape Pθ to a distribution Q. NEEMo replaces
the ϵ-Sinkhorn estimation in the standard SHAPER procedure with a Lipschitz network that evaluates
the Kantorovic potential to obtain the EMD.

3 NEEMo: Neural Estimation of the Energy Mover’s Distance

Algorithm Consider a high-energy particle-collision event with n particles. Let Ei be the energy
of particle i, xi be the direction of its momentum, and Q = {(Ei,xi)}ni=1 be the set of all particles
in the event. Following the SHAPER prescription Gambhir et al. [2022] for defining an observable
O(Q), we first define Pθ = {wi

θ,y
i
θ}mi=1 to be any collection of points parameterized by θ, e.g.,

these points can be sampled from any geometric object with any density distribution. The EMD
between the event Q and the geometric object Pθ can be computed with equation 5 as

EMD(Pθ,Q) = max
ϕ

[
n∑

i=1

Eifϕ(x
i)−

m∑
i=1

wi
θfϕ(y

i
θ)

]
, (6)

where fϕ(x) is a 1-Lipschitz neural network with parameters ϕ. At ϕ∗ the expression above is
maximized and fϕ∗ is the Kantorovic potential from which the EMD is obtained as the RHS of
equation 6. Since f is differentiable, the optimum can be obtained using standard gradient descent
techniques. This is the key improvement of NEEMo over SHAPER, which can only estimate the
Kantorovic potential and the EMD up to a specified order ϵ. Note that in equation 6 the expectation
is computed exactly but optimization can also be done stochastically by sampling from the discrete
distributions with probabilities {Ei}i and {wi

θ}i and using the empirical mean to estimate the EMD.
This can improve convergence in some cases.

Given that all of our operations are differentiable, gradients can flow back to Pθ . Therefore, one can
also optimize the parameters θ to obtain the best-fitting collection of points in that class. We obtain
the following minimax optimization problem:

O(Q) = min
θ

max
ϕ

[
n∑

i=1

Eifϕ(x
i)−

m∑
i=1

wi
θfϕ(y

i
θ)

]
, (7)

where O(Q) quantifies how well the event Q is described by the class of geometric object P Komiske
et al. [2020], Gambhir et al. [2022].

Limitations Unlike the conventional clustering algorithms used in high-energy particle physics,
NEEMo relies on nonconvex gradient-based optimization of a neural network and a set of geometric
parameters. This results in the clustering procedure itself being relatively slow and not easily
implemented in real time. This problem can be alleviated with powerful custom optimizers and
initialization techniques to guarantee fast convergence, though whether NEEMo could ever be run
online during data taking is an open question. We note that for many potential applications, e.g. at the
Electron-Ion Collider, this is not a problem since running online is not required.
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Figure 3: Same as Fig. 1, but fitting to distributions parameterized by a triangle and an ellipse.

4 Experiments
Synthetic Data We start with a few toy examples. First, consider an event consisting of three
sets of particles distributed uniformly along the perimeters of circles. Here, we know the exact
parameterization of our target distribution and use NEEMo to fit three randomly initialized circles
to the event. Figure 1 shows a few steps in the fit evolution. The Kantorovic potential given by the
Lipschitz-constrained network induces forces on the parameters of P, which drive it to evolve from
its random initialization to perfect alignment with the target distribution. In this example, O(Q) in
equation 7 quantifies the 3-circliness of the event Q, an observable first defined in Gambhir et al.
[2022]. To highlight the flexibility, we next consider an event with two sets of particles distributed
along the perimeters of a triangle and ellipse, respectively. Figure 3 shows that P again evolves
following the gradients of the Kantorovic potential to perfect alignment with the target distribution.

N-Subjets We now perform a model jet-substructure study, clustering synthetic data into N -subjets.
First, we generate jets with 3, 4, or 5 subjet centers distributed uniformly. From each center we
generate 10 particles drawn from a Gaussian distribution. We then use our algorithm to fit 3, 4, or 5
centers to the simulated jets. Figure 4 shows that our algorithm is able to estimate the correct number
of subjets. The EMD of the N-subjet fit is clearly lowest for jets with N true clusters.
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Figure 4: From left to right: Fit of N subjets (centers) to jets with 3, 4, or 5 number true subjets.

Future Directions In the framework developed in these proceedings, any parameterized source
distribution can be chosen to fit any target distribution using the EMD, without any ϵ-approximations.
This can be used, e.g., for constructing precision jet observables that are sensitive to percent-level
fluctuations for new physics searches at LHC experiments. In addition, NEEMo provides a more
precise way to quantify event modifications due to hadronization and detector effects. Finally, the
flexibility provided by NEEMo could potentially have a major impact on jet studies at the future
Electron-Ion Collider, where traditional clustering methods are not optimal. Rather than modifying
the metric used in a sequential-recombination algorithm as in Arratia et al. [2021], the jet geometry
itself can be altered using NEEMo in an event-by-event unsupervised manner. We plan to report on
all of these novel directions in a follow-up journal article that is currently in preparation.
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5 Broader Impacts

Comparing probability distributions is a fundamental task in statistics. Most commonly used methods
only compare densities in a point-wise manner, whereas the Earth Mover’s Distance accounts for the
geometry of the underlying space. This is easily visualized in our figures showing the Kantorovic
potential. Due to space constraints we only showed a few toy example applications in collider physics,
but we stress that the approach we present here—directly calculating the EMD using the Kantorovic-
Rubenstein dual formulation—can be applied to any optimal transport problem. While the existence
of the KR duality has long been known, it only recently became possible to simultaneously enforce
the exact 1-Lipschitz bound while achieving enough expressiveness to find the optimal Kantorovic
potential. Our approach now makes it possible to perform gradient-based optimizations over the
exact Earth Mover’s Distance. Given the sizable impact of similar approximate methods, we expect
our exact approach could have applications across many fields and types of problems.
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