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Abstract

We propose GAN-Flow – a modular inference approach that combines generative
adversarial network (GAN) prior with a normalizing flow (NF) model to solve
inverse problems in the lower-dimensional latent space of the GAN prior using
variational inference. GAN-Flow leverages the intrinsic dimension reduction
and superior sample generation capabilities of GANs, and the capability of NFs
to efficiently approximate complicated posterior distributions. In this work, we
apply GAN-Flow to solve two physics-based linear inverse problems. Results
show that GAN-Flow can efficiently approximate the posterior distribution in such
high-dimensional problems.

1 Introduction

Bayesian inference is attractive because the posterior distribution is able to capture and quantify
uncertainties. However, Bayesian inference can be practically and computationally challenging.
Practically, the selection of a well-informed prior density is difficult, but often crucial to the success
of Bayesian inference. Computationally, closed-form solutions are seldom available and the posterior
distribution must be approximated using appropriate techniques. Notably, high-dimensional posterior
distributions are difficult to approximate. Mixing times of Markov chain Monte Carlo (MCMC)
algorithms deteriorate as the dimensionality increases [4]. Similarly, designing high-dimensional
approximating distribution for variational inference can be equally difficult [7].

We propose a hybrid inference framework for large-scale inverse problems, which we call GAN-
Flow, that couples two types of generative models — generative adversarial networks (GANs)
and normalizing flows (NFs). GAN-Flow uses a data-driven GAN-based prior and leverages the
intrinsic dimensionality reduction offered by it [16, 17]. Next, GAN-Flow approximates the posterior
distribution in the latent space of the GAN-based prior using NFs. One notable feature of GAN-Flow
is as follows: after the GAN and NF components of the pipeline have been trained, additional samples
from the high-dimensional posterior distribution can be generated with minimal computational effort.
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This offers a significant advantage over sampling from the latent posterior using MCMC methods.
Moreover, owing to the NF model in the framework, the overall framework is explicit (permits exact
probability density evaluations in the latent space), which can be useful for many downstream tasks
such as Bayesian rare-events simulations [20].

Related work Deep generative models have been at the forefront of deep learning-driven infer-
ence [13]. GANs have been used to learn prior models [16, 17, 3] or the posterior distribution
directly [1]. Similarly, autoencoders [10] and normalizing flows [18, 21, 6] have been used to approx-
imate the posterior distribution. In particular, this work was inspired by [17, 3], where the authors
use adversarial priors and subsequently employ Hamiltonian Monte Carlo (HMC) and Metropolis-
adjusted Langevin algorithm, respectively, to sample from the latent space’s posterior. Bayesian
inference approaches that comprise a deep generative prior coupled with a way of sampling from its
posterior are known as modular Bayesian methods [3]. GAN-Flow is also modular in this sense, yet
distinct because it uses a GAN-based prior but approximates the posterior using variational inference
with the help of a NF.

2 Proposed method

Preliminaries Consider the random vectors x ∈ ΩX ⊆ RNX and y ∈ ΩY ⊆ RNY related by the
forward model f : ΩX → ΩY such that y = f(x). The inference of x from a noisy measurement
vector ŷ constitutes an inverse problem. Given a likelihood function pY(ŷ|x), Bayes’ rule is used to
update prior belief about x, characterized using the prior pX (x), as follows:

pX (x|ŷ) ∝ pY(ŷ|x) pX (x). (1)

Additionally, if the measurements are corrupted by an additive noise η distributed according to pη,
then ŷ = y + η and pY(ŷ|x) = pη(ŷ − f(x)) in Eq. (1). Using the posterior distribution, the
posterior statistics of any desired quantity of interest (denoted as ℓ(x)) can be computed as follows:

Ex∼pX (x|ŷ)
[
ℓ(x)

]
=

∫
ΩX

ℓ(x)pX (x|ŷ) dx (2)

Herein, we will refer to x and NX as the ambient variable and dimension, respectively.

+
Figure 1. Components of GAN-Flows: GAN-based priors and NFs-based variational inference.

GAN prior GAN-Flow utilizes a Wasserstein GAN with Gradient Penalty (WGAN-GP) [2, 11] to
model pX (x). It can be shown that WGAN-GP minimizes the Wasserstein-1 distance between pX (x)
and the distribution of g(z) [16]. As a result, for a perfectly trained GAN with generator g∗ [17]

Ex∼pX (x)

[
m(x)

]
= Ez∼pZ(z)

[
m ◦ g∗(z)

]
∀ m ∈ Cb(ΩX ), (3)

where Cb(·) is the space of continuously bounded functions and ◦ is used to denote the composition
of functions. Eqs. (2) and (3) can be combined to compute

Ex∼pX (x|ŷ)
[
ℓ(x)

]
= Ez∼pZ(z|ŷ)

[
ℓ ◦ g∗(z)

]
∀ ℓ ∈ Cb(ΩX ), (4)

by choosing m(·) = ℓ(·)pY(ŷ|·)/pY(ŷ), where pZ(z|ŷ) ∝ pY(ŷ|g⋆(z))pZ(z) is the posterior distribu-
tion of z conditioned on the measurements ŷ and pY(ŷ|g⋆(z)) is computed as pY(ŷ|x)|x=g∗(z) [17].
Eq. (4) implies that any statistics with respect to x (respectively, x|ŷ) can be computed using realiza-
tions of z (respectively, z|ŷ). Note, the trained generator g∗ serves as a map between realizations of
z ∈ ΩZ and realizations of x ∈ ΩX . Moreover, it is conventional to choose pZ(z) as an NZ -variate
standard normal distribution [17].
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Posterior approximation Given a latent prior density pZ(z) and an optimally trained generator
g∗, GAN-Flow uses a normalizing flow [12] to sample from the conditional posterior pZ(z|ŷ). This
is done by learning a bijective pushforward map h : ΩZ → ΩZ , parameterized by ψ, such that
h(z) ∼ pZ(z|ŷ), where z ∼ pZ(z). The parameters ψ of h is chosen by minimizing the loss

LNF(ψ) = Ez∼pZ(z)

[
− log pY(ŷ|g∗ ◦ h(z;ψ))− log pZ(h(z;ψ))− log|det∇zh(z;ψ)|

]
, (5)

where log pY(ŷ|g∗ ◦ h(z)) is the log-likelihood and ∇zh(z) is the Jacobian of h. The above loss
function can be derived through the reverse Kulback-Liebler divergence between pZ(z|ŷ) and the
distribution induced by h(z); see [21] for a similar derivation. For additive noise models, the
log-likelihood can also be written as pY(ŷ|g∗ ◦ h(z)) = pη(ŷ − f ◦ g∗(h(z))). We construct h
using NFs based on planar [18] and affine coupling [9] transformations. Flow-based models permit
efficient computation of ∇zh(z). Interested readers may refer to [12, 14] for reviews on NFs, popular
flow-based model architectures used to construct them and their many applications.

3 Numerical examples

We apply GAN-Flow to two physics-based high-dimensional linear inverse problems.

Inferring initial conditions in unsteady heat conduction We apply GAN-Flow to the two-
dimensional heat conduction problem where the initial condition of the temperature field (at t = 0)
must be inferred from a noisy measurement of the temperature field taken after some time (at t = 1).
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Figure 2. True initial (left), final (middle) and mea-
sured (right) temperature fields.

For more details about the underlying physics
model see Appendix A.1. The initial and final
temperature fields (x and y, respectively) are
discretized over a 32× 32 Cartesian grid and
shown in Fig. 2. Thus, the ambient dimension
of this inverse problem is 1024. The measure-
ments (see Fig. 2) are generated by adding
zero-mean Gaussian noise with unit variance
(pη ∼ N (0, 1)) to the final temperature field.
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Figure 3. Comparison of Bayesian inference of ini-
tial condition of the temperature field using GAN-
Flow (first row) and HMC with GAN prior (second
row), and the true posterior statistics (third row).

To apply GAN-Flow to this problem, first,
we train a WGAN-GP prior, with a 100-
dimensional latent space, using a synthetic
dataset S that we prepare by varying a pa-
rameterized model that can generate different
rectangular initial temperature fields. More
details about curating S can be found in Ap-
pendix A.1. For details about the WGAN-
GP and the associated hyperparameters see
Appendix B.1 and Table B2, respectively.
Some training images and realizations from
the trained WGAN-GP prior are also shown
in Fig. B1. Note, that training the WGAN-
GP does not require any evaluations of the
forward model f . Also, the chosen initial tem-
perature field in Fig. 2 was not used to train
the WGAN-GP model. Next, we train a nor-
malizing flow model that uses planar flows
with 20 flow layers to approximate the latent
posterior. More details about the NF model
and associated hyperaparameters are provided in Appendix B.2 and Table B3, respectively. Fig. 3
shows the results of the inference using GAN-Flow. Also shown in Fig. 3 are the results of inference
when posterior samples are obtained using HMC (see Appendix C for details) and the true posterior
mean and standard deviation that we compute using MC simulation and the parametric prior distri-
bution described in Appendix A.1. The results show that inference using GAN-Flow is consistent
with HMC sampling. For all the methods, the reconstruction error and posterior variance are largest
around the edges of the initial temperature field where there are sharp transitions. We anticipate that
a better WGAN-GP prior will help in resolving the edges of the initial temperature field.
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Application to inverse Radon transform Now we apply GAN-Flow for the Bayesian inference
of Shepp- Logan phantom [22] from noisy sinogram data. The forward model, described in Ap-
pendix A.2, involves the Radon transform [22], which is essentially a linear transformation of the
input image x ∈ RN×N . The object represented by the input image is scanned at N uniformly spaced
angles with N parallel detectors. Hence, the output sinogram image y, which carries information
about the density of the object, is also of size N ×N . In this work, we use the torch-radon
package [19] to compute Radon transforms. For this example, the ‘true’ object, and the noise-free and
noisy sinogram data are shown in Fig. 4. The noisy sinogram data is obtained by adding zero-mean
Gaussian noise with variance σ2

η to the noise-free sinogram (pη ∼ N (0, σ2
η)).

As before, the application of GAN-Flow to the inverse problem at hand starts with the training of a
WGAN-GP model that has a 100-dimensional latent space. More details about the architecture of the
WGAN-GP used in this example and associated hyperparameters can be found in Appendix B.1 and
Table B2, respectively. To train the WGAN-GP model, we generate a dataset S of 8000 phantom
images; each image is of dimension 128 × 128 (ambient dimensionality). The dataset generation
process is adopted from [17] and described in Appendix A.2. In particular, new phantoms are
generated by perturbing the Shepp-Logan phantom while respecting underlying spatial topologies.
Some realizations drawn from the WGAN-GP prior are also shown in Fig. B1. The true sample
shown in Fig. 4 was not a part of the training set S used to train the GANs.

Next, we perform variational inference in the latent space using a NF model composed of 32
affine coupling layers [9]. More details about the NF model used in this example and associated
hyperparameters can be found in Appendix B.2 and Table B3, respectively. Fig. 4 shows the
performance of the proposed approach for three different noise levels. GAN-Flow can recover first
(mean) and second (variance) order statistics of the posterior distribution at different noise levels. We
compare the statistics recovered using GAN-Flow against those computed using realizations of the
latent posterior obtained using HMC sampling (see Appendix C for more details). From Fig. 4 we
can see a good agreement between the posterior statistics computed using GAN-Flow and the latent
posterior sampling. However, we would like to emphasize that GAN-Flow required a total of 8000
evaluations of the forward model f to train the NF model. Neither does the WGAN-GP training
require any forward model evaluations, nor does obtaining newer posterior samples. Thus, once the
NF model has been trained, it becomes possible to compute any posterior statistics without additional
forward model evaluations. In contrast, every sample obtained using HMC will require additional
forward model evaluations (more specifically, gradient computations of the output of the forward
model with respect to the inputs are necessary). Moreover, in this case, HMC sampling requires more
than 8000 samples to be discarded for burn-in [17]. Thus, these results evince the computational
efficiency of GAN-Flow that it inherits from being a variational approach. On the flip side, we tried
to perform variational inference in the ambient space with a normalizing flow model similar to what
we use in GAN-Flow. The ambient space has dimensionality 1282 in this case, and the memory
footprint of the model was so large that we were unable to train it on our GPU with any meaningful
batch sizes. This shows that GAN-Flow also benefits from the dimension reduction capabilities of
adversarial priors. In Fig. 4 we also show the reconstruction using filtered back projection (FBP),
which are expectedly poor.
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Figure 4. Comparison of Bayesian inference of phantom object from noisy Radon transforms
using GAN-Flow and HMC with GAN prior. Also shown is the filtered back projection (FBP)
reconstruction (10th column).
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4 Conclusions

In this work, we propose GAN-Flow — a modular Bayesian framework for inference and apply it
to two physics-based linear inverse problems. GAN-Flow is composed of two generative models: a
GAN that serves as the prior and provides a map from the low-dimensional latent space to the ambient
space, and a NF model that is used for variational inference in the low-dimensional latent space. The
GAN prior facilitates the solution of the inverse problem in a lower-dimensional latent space. NFs
are then used to approximate the posterior of the latent variables using variational inference. Results
indicate GAN-Flow can be used to efficiently solve high-dimensional inverse problems, and can often
be more efficient than sampling from the latent posterior using MCMC-based algorithms. Future
work will consider nonlinear inverse models and a methodology for the assessment of the posterior
approximation obtained using GAN-Flow.

Broader Impact

In this work, we propose a modular Bayesian framework for inverse problems. Inverse problems are
ubiquitous across many disciplines of science and engineering. Therefore, an efficient and robust
inference framework that can solve high-dimensional inverse problems will be helpful. We envisage
the potential impacts of our work to be beneficial and do not foresee any negative societal impacts of
our work.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We have introduced a new framework called GAN-Flow
for Bayesian inference of physics-based inverse problems. Through two examples,
albeit synthetic and linear, we have demonstrated the efficacy of the framework.

(b) Did you describe the limitations of your work? [Yes] In the heat conduction example,
we noted that the quality of the prior will dictate the overall quality of the inference.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] We do
not foresee any potential negative impacts of our work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] We have stated

any assumptions made in this work and cited references to most of the theoretical
results we have used in this work.

(b) Did you include complete proofs of all theoretical results? [No] Eq. (5) is the only
theoretical result new in this paper and that can be derived following the presentation
in [21] after using the appropriate definition of pY(ŷ|g⋆(z)).

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] Codes and
datasets will be shared upon request by contacting the corresponding author. But, we
provide all pertinent details necessary to reproduce our work in the supplementary
material and cite relevant resources/papers where more details can be found.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] All training details can be found in Tables A1 and B2 and appendices B.1
and B.2

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Training GANs and NFs is computationally expensive.
Hence, we were unable to study the effects of random seeds. If necessary, we will
perform further ablation studies and report on the effects of random seeds.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix B

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We have cited relevant

sources for any packages that we have used in this work. The only external asset we
use is the torch-radon package [19].

(b) Did you mention the license of the assets? [No] The torch-radon package is
distributed under the GNU General Public License.

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
We have cited the relevant source for torch-radon

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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A Forward models and dataset generation

A.1 Initial condition inference

The two-dimensional time-dependent heat conduction partial differential equation over the bounded
domain Ω is given as:

∂u(s, t)

∂t
−∇ · (κ(s)∇u(s, t)) = b(s), ∀(s, t) ∈ Ω× (0, T )

u(s, 0) = m(s)∀s ∈ Ω

u(s, t) = 0,∀(s, t) ∈ ∂Ω× (0, T )

(6)

The temperature field is discretized over a 32× 32 size grid. Further, we choose Ω = [0, L]× [0, L],
where L = 2π, and t = 1. All quantities are assumed non-dimensional without a loss in generality.
The measurement y include the temperature field at t = T . Added to the measurements is an additive
Gaussian noise of zero mean and unit variance. We wish to infer the initial temperature field x at
t = 0. It is possible to write y = Ax [15], thus, the inverse problem at hand is linear.

Dataset generation We consider the dataset of rectangular inclusion for this experiment. Specifi-
cally, we consider a dataset of initial temperature field, where it is zero everywhere else except in a
rectangular region, where it varies linearly from the value of 2 units on the left edge to 4 units on
the right edge. This rectangular region is generated by sampling the coordinates of the top-left and
lower-right corners uniformly between [0.2L, 0.4L] and [0.6L, 0.8L], respectively and L is set to 2π
unit.

A.2 Radon Transform

Given the material density function ρ ∈ Ω ⊂ R2 → R, the Radon transform is given as

R(ρ; t, ϕ) =

∫
ℓt,ϕ

ρdℓ, (7)

where ℓt,ϕ is the line that traverses through Ω at a distance of t from the center and an inclination of
ϕ. Therefore, given an input phantom image x ∈ RN×N , the forward model

y = f(x) ∈ RN×N where yij = Rh(x; ti, ϕj). (8)

Rh is the discrete Radon transform. The output y is commonly known as a sinogram. In this work,
we choose N = 128, and each phantom is scanned at 128 uniformly spaced angles between 0◦ and
180◦ with 128 detectors.

Dataset generation We generate the dataset used to train the WGAN following Patel et al. [17].
The Shepp-Logan phantom is composed of the union of ten ellipses. Each ellipse has constant but
different density. Let the kth ellipse Ek be centered at (rk, sk), with semi-axis lengths ak, bk, angle
of inclination αk and density ρk. Now, the density of the phantom at any coordinate (r, s) is given by

ρ(r, s) = Σ10
k=1Ck(r, s), where Ck(r, s) =

{
ρk if (r, s) ∈ Ek

0 otherwise
(9)

We adopt the values of the base parameters from [22]; the values of the base parameters are tabulated
in Table A1.

We generate new phantoms by perturbing the original base parameters in Table A1 to obtain slightly
perturbed ellipses Ẽk as follows:

r̃k = rk + 0.005ξk,1, s̃k = sk + 0.005ξk,2, ãk = ak + 0.005ξk,3,

b̃k = bk + 0.005ξk,4, α̃k = αk + 2.5ξk,5, ρ̃k = ρk + 0.0005ξk,6
(10)

where
{
{ξk,i}i=6

i=1

}k=10

k=1
are random parameters with distribution U(−1, 1). Finally, we set the

density ρ of the perturbed phantom following

ρ(r, s) = max

(
0,min

(
1,Σ10

k=1C̃k(r, s)
))

, where C̃k(r, s) =

{
ρ̃k if (r, s) ∈ Ẽk

0 otherwise
(11)
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Table A1. Base parameters of the Shepp-Logan phantom. Note, αk is in degrees.
k rk sk ak bk αk ρk
1 0.0 0.0 0.69 0.92 0 1.0
2 0.0 −0.0184 0.6624 0.874 0 −0.8
3 0.22 0.0 0.11 0.31 −18 −0.2
4 −0.22 0.0 0.16 0.41 −18 −0.2
5 0.0 0.35 0.21 0.25 0 0.1
6 0.0 0.1 0.046 0.026 0 0.1
7 0.0 −0.1 0.046 0.046 0 0.1
8 −0.08 −0.605 0.046 0.023 0 0.1
9 0.0 −0.606 0.023 0.023 0 0.1

10 0.06 −0.605 0.023 0.046 0 0.1

which also ensures that the material density ρ̃ at any point is bounded within 0 (air cavity) and 1
(bone). We obtain discrete phantom images by evaluating Eq. (11) on a 128× 128 grid. This image
is further subject to a transformation that translates it by n and m pixels in the horizontal and vertical
direction, respectively, and rotates it by an angle β. We assume

n,m ∼ U {−8,−7, . . . , 7, 8} , β ∈ U(−20◦, 20◦) (12)

B GAN-Flow architectures and hyperparameters

GAN-Flows consist of a WGAN-GP and a normalizing flow model. We provide details of the WGAN
architectures in Appendix B.1 and associated hyperparameters in Table B2 . Similarly, we provide
details of the affine coupling transform-based normalizing flow model in Appendix B.2. To describe
the network architectures we introduce the following nomenclature:

• FC(n,m) denotes a fully connected layer with n input neurons and m output neurons.
• Conv2D(c,k1 × k2, s, p) denotes a convolution layer with c filters of size k1 × k2

with stride s and padding p

• TransConv2D(c,k1 × k2, s, p) denotes a transpose convolution layer with c filters
of size k1 × k2 with stride s and padding p

• BN, LN and ActNorm denote batch norm, layer norm and activation normalization, respec-
tively.

• TanH, Sigmoid, LReLU(α) denote hyperbolic tangent, sigmoid and leaky ReLU (with
activation parameter α) activation functions, respectively.

Some realizations from the trained WGAN-GP priors of the initial temperature field and phantom
object are shown in Fig. B1. All experiments in this work were carried out on an NVIDIA Quatro
RTX 800 GPU that has a memory capacity of 48 GB.

Table B2. Hyperparameters for WGAN-GP.
Hyperparameter Rectangular initial condition Shepp-Logan phantom

Epochs 500 1000
Learning Rate 0.0001 0.0002

Bach Size 64 100
ncritic/ngen 5 4
Optimizer Adam RMSprop

Optimizer parameters β1 = 0.9, β2 = 0.99 0.9
Gradient penalty 10 10

B.1 GAN Architectures

Initial condition inference In this example we choose NZ = 100 and the generated images are of
size 32× 32. The generator architecture is as follows: Input (shape [∗, 100]) → FC(100, 512)
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Figure B1. Realizations drawn from the trained WGAN-GP priors of the initial temperature field
(left) and phantom object (right).

→ ReLU→ Reshape into [∗, 32, 4, 4] → TransConv2D(16, 4 × 4, 2, 1)→ ReLU→ BN
→ TransConv2D(8, 4 × 4, 2, 1) → ReLU → BN → TransConv2D(1, 4 × 4, 2, 1)
→ TanH→ Rescale between [0, 4]→ Output.

The critic architecture is as follows: Input (shape [∗, 1, 32, 32]) → Conv2D(8, 4× 4, 2, 2)
→ LReLU(0.2) → Conv2D(16, 4 × 4, 2, 2) → LReLU(0.2) → Conv2D(32, 4 × 4,
2, 2)→ LReLU(0.2)→ Reshape into [∗, 512] → FC(512, 8)→ LReLU(0.2)→ FC(8,
1)

Inverse radon transform In this example we choose NZ = 100 and the generated phantoms are
of size 128 × 128. The generator architecture is as follows: Input (shape [∗, 100]) → FC(100,
1024) → BN → ReLU → FC(1024, 8192) → BN → ReLU → Reshape into [∗, 128, 8, 8] →
TransConv2D(128, 5× 5, 2, 2)→ BN→ ReLU→ TransConv2D(64, 5× 5, 2, 1)
→ BN→ ReLU→ TransConv2D(32, 5× 5, 2, 1)→ BN→ ReLU→ TransConv2D(1,
5× 5, 2, 1)→ TanH→ Rescale between [0, 1]→ Output.

The critic architecture is as follows: Input (shape [∗, 1, 128, 128]) → Conv2D(1, 5 × 5, 2,
2)→ LReLU(0.2)→ Conv2D(32, 5× 5, 2, 2)→ LN→ LReLU(0.2)→ Conv2D(64,
5×5, 2, 2)→ LN→ LReLU(0.2)→ Conv2D(128, 5×5, 2, 2)→ LN→ LReLU(0.2)
→ Reshape into [∗, 8192]→ FC(8192, 1024)→ FC(1024, 1)→ Output.

B.2 Normalizing flow architectures

In this section we provide details of the normalizing flow models that we use in the two numerical
examples. Details of associated hyperparameters are provided in Table B3.

Initial condition inference For this example, we use planar flow layers [8, 9] to construct normal-
izing flows. The coupling layer subjects to its input u the following perturbation to obtain the output
v:

v = u+ s⊙ h(wTu+ b), (13)
where w, s, b are the parameters of the flow layer and h(·) is an element-wise nonlinearity that we
choose to be the TanH activation.

Inverse radon transform For this example, we use affine coupling transform-based flow layers
[8, 9] to construct normalizing flows. The coupling layer (see Fig. B2) works as follows: an input u
is first subjected to a random permutation followed by ActNorm, and then divided into two parts u1

and u2 which are transformed into v1 and v2 as follows

v1 = u2 ⊙ exp[s1(u1)] + t1(u1) → v2 = u1 ⊙ exp[s2(v1)] + t2(v1), (14)

such that vT = [vT
1 ,v

T
2 ]. where s1, s2, t1, t2 are scale and shift operators modeled using stan-

dard neural networks. A normalizing flow is constructed by stacking K such coupling layers.
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Figure B2. Affine coupling layer [9].

The use of coupling layer constrains
the Jacobian to be upper triangu-
lar; meaning det ∂v/∂u can be com-
puted efficiently [8]. si, ti is the
output of a fully connected deep
neural network as follows: Input
(shape [∗, 50]) → FC(50, 12) →
LReLU(0.01) → BN → FC(50,
12)→ LReLU(0.01)→ BN→ FC(12, 100)→ Output. One half of this output is si and the
other half is ti.

Table B3. Normalizing flow models and associated hyperparameters.
Model / Hyperparameter Rectangular initial condition Shepp-Logan phantom

Flow Layer Planar [18] Affine coupling [9]
No. of layers 20 32

Epochs 500 500
Learning Rate 0.005 0.005

Bach Size 32 16
Optimizer Adam Adam

Optimizer parameters β1, β2 0.9, 0.999 0.9, 0.999

C Inference using Hamiltonian Monte Carlo

In this section we provide details of posterior sampling from the latent space using Hamiltonian Monte
Carlo (HMC). We use the hamiltorch package [5] to perform No U-turn sampling (NUTS). For
both examples, we obtain a sample of size 60,000 and discard the first 30,000 realizations considering
burn-in. We also set the number of leap frog steps to 10 and the step size as 0.01 with a desired
acceptance rate of 0.75.
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