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Abstract

We propose GAN-Flow – a modular inference approach that combines generative
adversarial network (GAN) prior with a normalizing flow (NF) model to solve
inverse problems in the lower-dimensional latent space of the GAN prior using
variational inference. GAN-Flow leverages the intrinsic dimension reduction
and superior sample generation capabilities of GANs, and the capability of NFs
to efficiently approximate complicated posterior distributions. In this work, we
apply GAN-Flow to solve two physics-based linear inverse problems. Results
show that GAN-Flow can efficiently approximate the posterior distribution in such
high-dimensional problems.

1 Introduction

Bayesian inference is attractive because the posterior distribution is able to capture and quantify
uncertainties. However, Bayesian inference can be practically and computationally challenging.
Practically, the selection of a well-informed prior density is difficult, but often crucial to the success
of Bayesian inference. Computationally, closed-form solutions are seldom available and the posterior
distribution must be approximated using appropriate techniques. Notably, high-dimensional posterior
distributions are difficult to approximate. Mixing times of Markov chain Monte Carlo (MCMC)
algorithms deteriorate as the dimensionality increases [4]. Similarly, designing high-dimensional
approximating distribution for variational inference can be equally difficult [7].

We propose a hybrid inference framework for large-scale inverse problems, which we call GAN-
Flow, that couples two types of generative models — generative adversarial networks (GANs)
and normalizing flows (NFs). GAN-Flow uses a data-driven GAN-based prior and leverages the
intrinsic dimensionality reduction offered by it [16, 17]. Next, GAN-Flow approximates the posterior
distribution in the latent space of the GAN-based prior using NFs. One notable feature of GAN-Flow
is as follows: after the GAN and NF components of the pipeline have been trained, additional samples
from the high-dimensional posterior distribution can be generated with minimal computational effort.
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This offers a significant advantage over sampling from the latent posterior using MCMC methods.
Moreover, owing to the NF model in the framework, the overall framework is explicit (permits exact
probability density evaluations in the latent space), which can be useful for many downstream tasks
such as Bayesian rare-events simulations [20].

Related work Deep generative models have been at the forefront of deep learning-driven infer-
ence [13]. GANs have been used to learn prior models [16, 17, 3] or the posterior distribution
directly [1]. Similarly, autoencoders [10] and normalizing flows [18, 21, 6] have been used to approx-
imate the posterior distribution. In particular, this work was inspired by [17, 3], where the authors
use adversarial priors and subsequently employ Hamiltonian Monte Carlo (HMC) and Metropolis-
adjusted Langevin algorithm, respectively, to sample from the latent space’s posterior. Bayesian
inference approaches that comprise a deep generative prior coupled with a way of sampling from its
posterior are known as modular Bayesian methods [3]. GAN-Flow is also modular in this sense, yet
distinct because it uses a GAN-based prior but approximates the posterior using variational inference
with the help of a NF.

2 Proposed method

Preliminaries Consider the random vectors x 2 
X � RNX and y 2 
Y � RNY related by the
forward model f : 
X ! 
Y such that y = f(x). The inference of x from a noisy measurement
vector ŷ constitutes an inverse problem. Given a likelihood function pY(ŷjx), Bayes’ rule is used to
update prior belief about x, characterized using the prior pX (x), as follows:

pX (xjŷ) / pY(ŷjx) pX (x): (1)

Additionally, if the measurements are corrupted by an additive noise � distributed according to p�,
then ŷ = y + � and pY(ŷjx) = p�(ŷ � f(x)) in Eq. (1). Using the posterior distribution, the
posterior statistics of any desired quantity of interest (denoted as ‘(x)) can be computed as follows:

Ex�pX (xjŷ)

�
‘(x)

�
=

Z

X

‘(x)pX (xjŷ) dx (2)

Herein, we will refer to x and NX as the ambient variable and dimension, respectively.

+
Figure 1. Components of GAN-Flows: GAN-based priors and NFs-based variational inference.

GAN prior GAN-Flow utilizes a Wasserstein GAN with Gradient Penalty (WGAN-GP) [2, 11] to
model pX (x). It can be shown that WGAN-GP minimizes the Wasserstein-1 distance between pX (x)
and the distribution of g(z) [16]. As a result, for a perfectly trained GAN with generator g� [17]

Ex�pX (x)

�
m(x)

�
= Ez�pZ(z)

�
m � g�(z)

�
8 m 2 Cb(
X ); (3)

where Cb(�) is the space of continuously bounded functions and � is used to denote the composition
of functions. Eqs. (2) and (3) can be combined to compute

Ex�pX (xjŷ)

�
‘(x)

�
= Ez�pZ(zjŷ)

�
‘ � g�(z)

�
8 ‘ 2 Cb(
X ); (4)

by choosing m(�) = ‘(�)pY(ŷj�)=pY(ŷ), where pZ(zjŷ) / pY(ŷjg?(z))pZ(z) is the posterior distribu-
tion of z conditioned on the measurements ŷ and pY(ŷjg?(z)) is computed as pY(ŷjx)jx=g�(z) [17].
Eq. (4) implies that any statistics with respect to x (respectively, xjŷ) can be computed using realiza-
tions of z (respectively, zjŷ). Note, the trained generator g� serves as a map between realizations of
z 2 
Z and realizations of x 2 
X . Moreover, it is conventional to choose pZ(z) as an NZ -variate
standard normal distribution [17].
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