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Abstract

Galaxy morphological classification is an important but challenging task in as-
tronomy. Most prior work study coarse-level morphological classification and use
raster low-dynamic range images, but we are interested in high-dynamic range
images commonly produced in imaging surveys. To tackle this problem, first we
build a dataset with high dynamic range for fine-level multi-class classification that
are even challenging to human eyes. Then we propose to use Deformable Attention
Transformer for this difficult task with five-bands images and masks, and in the
experimental results our model achieves about 70% and 94% for top-1 and top-2
test set accuracies, respectively. We also visualize attention maps and analysis the
results with respect to different classes and mask sizes to understand the data and
behavior of the model. We confirm that our model has similar confusion patterns
in confusion matrix as human along with attention visualization for capturing
morphological characteristics.

1 Introduction

Morphological classification of galaxies is a common task required in observational research on
galaxy evolution to study correlations between morphology and other physical quantities. Previous
applications of machine learning have focused on the mainly binary classification of morphology as
early and late-type galaxies, including usages of vision transformer and convolution neural networks
with raster images [1, 2]

We extend the validity of the attention-based deep learning models in fine-level morphological
classification in terms of the Hubble sequence with full exploitation of high-dynamic range galaxy
images and detection masks based on signal-to-noise levels. Compared to previous works, we directly
use the high-dynamic range images instead of raster low-dynamic range images in order to make
the models fully recognize important morphological features. The new models also use pixel masks
of invalid values commonly produced in imaging surveys. Classification in the Hubble sequence
depends on morphological features such as spiral and spheroidal structures [3]. For example, Sab and
Sc-types in the Hubble sequence show strong spiral structures.

The trained model should show similar systematic patterns in the classification as professional
astronomers do. For example, the model should be uncertain for classifying apparently small galaxies
due to the limitation of spatial resolution and sensitivity. We also expect confusion among the classes
to be identical to what humans exhibit [4].
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Table 1: Description of our unbalanced dataset; the number of data for each class and ratio from the
total amount of the dataset.

E Im S0 Sab Sc Sdm dE U Total

Train 2457
16.129%

230
1.510%

2081
13.661%

6861
45.040%

2580
16.937%

1024
6.722%

0
0%

0
0% 15233

Test 616
16.143%

58
1.520%

522
13.679%

1717
44.067%

646
16.572%

257
6.581%

0
0%

0
0% 3816

Total 3073
15.786%

288
1.480%

2603
13.372%

8578
44.067%

3226
16.572%

1281
6.581%

68
0.349%

349
1.793% 19466

2 Method
2.1 Data

Images of galaxies are acquired in Pan-STARRS1 stack images as cutouts for given sky positions in
FITS format for five different photometric bands 1 [5]. Labeled training data consist of galaxies with
known Hubble sequence morphological types in three catalogs: AMIGA [6], EFIGI [7], and Nair &
Abraham’s catalog [8]. Regrouping classes with a small number of training samples together, our
models consider six classes: E, S0, Sab, Sc, Sdm, and Im. We do not consider a class dE because
there are not many training samples compared to other classes. The statistics of our dataset are in
Table 1.

The input data include galaxy images and corresponding object masks as well as masks of invalid
pixels in the format of 480 by 480 pixels. Therefore, the model handles the galaxy images and masks
of invalid pixels (Nan-Masks) for the five photometric bands in addition to a single object mask per
galaxy (Galaxy-Mask). If there is nan-value in a single band image, the nan-value need to be changed
to an appropriate value in learning. We expanded the galaxy shape mask by dilation and then fill it
using a 2D interpolation function if there is nan-value in the expanded galaxy-mask. We adopt the
min-max normalization method so that the image pixel value is between 0 and 1. Data augmentation
includes horizontal and vertical flips and rotations.

2.2 Model

Vision Transformer-based models have recently achieved superior results on many vision tasks
[9, 10, 11, 12, 13, 14]. Among them, Deformable Attention Transformer(DAT) utilizes more flexible
Deformable Attention [15] and has achieved state-of-the-art on image classification tasks. By utilizing
the hierarchical pyramid structure validated in Pyramid Vision Transformer(PVT)[11] and Swin-
Transformer[10], DAT has tried to reduce the computation cost used for Self-Attention, the biggest
issue of existing Vision Transformer(ViT)[9]. Swin-Transformer uses window-based local attention.
In this case, the computation cost used in the self-attention is less than a vanilla transformer, but the
learning of the long-range dependency may be weaker. Therefore, DAT uses the deformable module
to reduce the amount of computation but also performs self-attention on more important tokens. The
overall architecture of the DAT is the almost same as that of the Swin-Transformer, except that the
shift attention block in stages 3 to 4 has been replaced with the deformable attention block, as shown
in Figure 1. By using this deformable attention, the model can learn powerful representations by
taking more important tokens and global receptive fields.

To perform the Deformable Attention, DAT uses deformable attention equation 2 instead of vanilla
attention equation 1 where feature map x ∈N×C and Wq,Wk,Wv ∈C×C . By following equation 2,
the keys and queries for attention are deformed where deformed input feature map x̃ ∈H×W×C . So,
final deformed attention is calculated like equation 3. By using this deformable attention, the model
can learn powerful representations by taking more important tokens and global receptive fields.

z = σ(qk⊤/
√
d)v, where q = xWq, k = xWk, v = xWv (1)

q = x̃Wq, k̃ = x̃Wk, ṽ = x̃Wv, where x̃ = ϕ(x; p+∆p) with ∆p = θoffset(q) (2)

z = σ(qk̃⊤/
√
d)ṽ (3)

1http://ps1images.stsci.edu/cgi-bin/ps1cutouts
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Figure 1: Overall architecture of DAT

E-Class Im-Class S0-Class Sab-Class Sc-Class Sdm-Class

Figure 2: Distribution of the last layer’s attention in the example galaxy for each class. The contours
show the strength of attention, and the background gray-scale plots correspond to r-band images.

We compare the performance of DAT on galaxy morphological classification with that of prior work
with another Vision Transformer-based model called Linformer [1] on Galaxy Zoo 2 dataset [16]
and the experimental result shows that DAT achieves 82.222% test set accuracy and outperforms
Linformer (80.427% test set accuracy in our experiment, 80.55% is reported in [1]). Therefore,
we use DAT in our main experiments, expecting to perform self-attention on tokens that are more
important than Linformer.

3 Results

This section will cover the various classification results on our dataset and analyze them. The
hyper-parameters used to learn the base model are as follows. The warming up epoch is 10, the
base learning rate is 4e-4, the minimum learning rate is 5e-6, the weight decay value is 0.05, clip
gradient value is 1.0. It uses a cosine scheduler, and the batch size is 18. We observe not significant
improvement after training with more epochs, so we set the epoch to 100 for all methods. Training
takes about one day with A100 40GB GPU.

3.1 Classification Performance

We modify the DAT model to fit our data, and the hyper-parameters are the same in all model
architectures. Since we use extremely unbalanced data, we try a number of different methods. First,
weighted loss for each class was exploited according to the distribution of classes. Next, class uniform
sampling was used so that all classes could be uniformly sampled in the mini-batches. In addition,
we try to overcome the data issue by using data augmentation strategies called MixUp[17] and
balanced-MixUp[18]. For the main results of our experiments, see Table 2. Our main model achieved
70.152% for top-1 accuracy on test set, 94.366% for top-2, and 99.319% for top-3, respectively.

We also visualize the attention maps in Figure 2. The models give high attention to the part where
the galactic nucleus is located and the shape of the galaxy is traced as presented in Figure 2. See the
appendix for how the attention map changes depending on the model’s layer.

In the case of using weighted loss for each class, the performance was worse than base, and it can be
found in [1] too. This can be attributed to the decrease in performance for classes with large numbers
of data due to relatively increasing the weight of learning for the classes with smaller number of
samples. And in the case of using Class Uniform Sampling, since the smallest number of data in
classes (Im) is 288 and the largest number of data in classes (Sab) is 8578, we assume the data itself
is not enough to learn for the classes with extremely small number of data.

By doing linear interpolation for two certain sampled data, MixUp encourages them to have linear
behavior according to the decision boundary[17]. Since our dataset has continuous characteristics
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Table 2: Classification performance of our models.

Model Acc Top-1 Acc Top-2 Acc Top-3

Small 68.947% 93.842% 99.240%

Base 70.152% 94.366% 99.319%

Base-Weighted Class Loss 64.492% 91.824% 98.873%

Base-Class Uniform Sampling 64.596% 91.876% 98.716%

Base-MixUp 68.265% 93.449% 99.083%

Base-Balanced MixUp 69.418% 93.973% 99.319%

Galaxy Mask Size

A
c
c
u

ra
c
y

(𝟓𝟎𝟐, 𝟕𝟓𝟐] (𝟕𝟓𝟐, 𝟏𝟎𝟎𝟐] (𝟏𝟎𝟎𝟐, 𝟏𝟐𝟓𝟐] (𝟏𝟐𝟓𝟐, 𝟏𝟓𝟎𝟐] (𝟏𝟓𝟎𝟐, 𝟏𝟗𝟎𝟐] (𝟏𝟗𝟎𝟐, 𝟐𝟑𝟎𝟐] (𝟐𝟑𝟎𝟐, 𝟑𝟎𝟎𝟐] (𝟑𝟎𝟎𝟐, 𝟒𝟖𝟎𝟐]

Figure 3: Confusion matrix of prediction (left) and the top-2 accuracy of E, Sab, and Sc classes with
respect to the bins of galaxy mask sizes (right) for the test data in the base model.

rather than traditional image datasets, the decision boundaries of the dataset may be closer and
unclear. Because of this, we hypothesize that the MixUp approach did not help train on our dataset
and rather hindered learning because MixUp did not consider highly unbalanced datasets. The
balanced-MixUp performes a mixup between instance-based mini-batch and class-based mini-batch
on a highly unbalanced dataset[18]. By doing this, it overcomes the limitations of the MixUp method
that does not take into account the distribution of the highly unbalanced dataset, which is the cause of
the performance degradation. We observed the performance was improved compared to MixUp by
using the balanced MixUp. But the result shows the balanced MixUp method is still not helpful for
training on our dataset and we conjecture the dataset itself needs more detailed investigation along
with better approaches.

3.2 Confusion Pattern

In the cases of S0 and E, Sab and Sc, and Im and Sdm, morphological features are similar between
them, making it a difficult classification problem even for professionally trained astronomers. As
shown in Figure 3, the tendency found in the DAT model is similar to what humans generally show.
The classification confusion found in our results is not surprising because the Hubble sequence
represents galaxy morphology in continuous changes of morphological features (see the appendix for
the results in the other models). Therefore, the top-2 accuracy presented in Table 2 is much higher
than the top-1 accuracy.

The effect of limited field-of-view due to the fixed size of images appears in the classification
performance for different sizes of galaxies. For small galaxies, the spatial resolution is too poor to
depict important morphological features for certain morphological types. As it is difficult to see what
phrases are written in distant traffic signs, it is not easy to distinguish key morphological features of
galaxies when a galaxy is small. Figure 3 shows that the classification accuracy of E-class galaxies is
quite low for small size, which is measured by the number of pixels in the object masks, due to the
lack of strong detectable morphological features. As size increases, the classification performance
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(d) PGC0041220(a) PGC0022950 (b) PGC0029822 (c) PGC0051312

Figure 4: Large E-class galaxies where the size of object masks is between 3002 and 4802. The
model correctly classifies (a), (b), and (c) galaxies. However, (d) galaxy is incorrectly predicted as
Sab-class due to the influence of a foreground star (i.e., the bright object near the edge) which is
assigned high attention.

improves for E-class galaxies. As shown in Figure4 as an example, most E-class galaxies are correctly
classified even though they are large and the spatial coverage of the data is not large enough to present
an entire galaxy. However, some galaxy shown in Figure 4 is affected by foreground objects, which
are not part of the galaxy. As highlighted in Figure3, the top-2 accuracy of the E-class is slightly
decreased for large galaxies because large E-type galaxies are more susceptible to the influence of
foreground irrelevant sources affecting simple morphological features of E-type galaxies. In the case
of the Sab class, the accuracy does not change significantly regardless of the galaxy size because
distinguishable characteristics are recognized even when the object is small.

4 Conclusion

We conducted extensive experiments with several machine learning approaches on our new dataset.
We show that our DAT models 1) utilize five different bands images(g, r, i, z, y-band), 2) does
multiclass classification on the unclean high-dynamic range galaxy images, 3) not only use galaxy
images but also use galaxy masks and nan-value masks, and 4) tried to overcome the unbalanced
dataset by using relevant machine learning approaches.

Furthermore, we show that by analyzing predicted outputs by the model, the tendency of the person
to classify and the tendency of the model to classify may have similar systematic patterns.

There are many unlabeled datasets in the field of astronomy. As a future work, we aim to overcome
the unbalanced dataset issue by using semi-supervised learning that may utilize the huge unlabeled
datasets.

5 Potential broader impact of this work

The inputs including masks of invalid pixels in this work are similar to what big astronomical survey
projects typically produce. We expect our model to be easily adopted in astronomy community of
large imaging surveys with their data reduction pipelines and products.

The systematic patterns depending on objects’ size in classification performance shown here highlights
the expected performance of vision tasks with limited spatial resolution in data. For example,
classification and segmentation models for autonomous vehicles and medical applications must be
affected by the limitation of spatial resolution in producing uncertain or wrong results in handling
small distant objects found in images for vehicles and poor-resolution radiology images.

We do not find the significant potential negative societal impact of our work as we deal with
astronomical data, not human or privacy-sensitive ones.
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(a) Small (b) Base-Weighted Class Loss (c) Base-Class Uniform Sampling

(d) Base-MixUp (e) Base-Balanced MixUp

Figure 5: Confusion matrix for all models.

Figure 6: Attention maps for PGC0003830 in E class with prediction confidences in the base model
as E: 0.863, Im: 0.000, S0: 0.132, Sab: 0.005, Sc: 0.000, and Sdm: 0.000.
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Figure 7: Attention maps for PGC0009530 in Im class with prediction confidences in the base model
as E: 0.000, Im: 0.852, S0: 0.000, Sab: 0.000, Sc: 0.001, and Sdm: 0.147.

Figure 8: Attention maps for PGC0036944 in S0 class with prediction confidences in the base model
as E: 0.168, Im: 0.000, S0: 0.630, Sab: 0.201, Sc: 0.000, and Sdm: 0.000.

Figure 9: Attention maps for PGC0002331 in Sab class with prediction confidences in the base model
as E: 0.004, Im: 0.000, S0: 0.092, Sab: 0.891, Sc: 0.013, and Sdm: 0.000.
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Figure 10: Attention maps for PGC0021443 in Sc class with prediction confidences in the base model
as E: 0.000, Im: 0.000, S0: 0.000, Sab: 0.094, Sc: 0.888, and Sdm: 0.018.

Figure 11: Attention maps for PGC0035900 in Sdm class with prediction confidences in the base
model as E: 0.000, Im: 0.113, S0: 0.000, Sab: 0.000, Sc: 0.026, and Sdm: 0.861.
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