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Abstract

In particle physics, precise simulations are necessary to enable scientific progress.
However, accurate simulations of the interaction processes in calorimeters are
complex and computationally very expensive, demanding a large fraction of the
available computing resources in particle physics at present. Various generative
models have been proposed to reduce this computational cost. Usually, these
models interpret calorimeter showers as 3D images in which each active cell of
the detector is represented as a voxel. This approach becomes difficult for high-
granularity calorimeters due to the larger sparsity of the data. In this study, we
use this sparseness to our advantage and interpret the calorimeter showers as point
clouds. More precisely, we consider each hit as part of a hit distribution depending
on a global latent calorimeter shower distribution. A first model to learn calorimeter
showers as point clouds is presented. The model is evaluated on a high granular
calorimeter dataset.

1 Introduction

Particle physics requires precise simulations to achieve scientific progress. More than half of the
computational resources of the Large Hadron Collider (LHC) computing grid are already used for
simulation [1]. In the future High Luminosity Phase of the LHC, about 100 times as many simulated
events will be needed [2]. The simulation of calorimeters is typically one of the most computationally
intensive parts of a detector simulation, and there is an ongoing effort to reduce this computational
cost using machine learning.

A high-energetic particle interacting with the material of a calorimeter typically creates a cascade of
secondary particles, which in turn interact with the material of the calorimeter, creating an avalanche
of lower-energy particles. Modern calorimeters often consist of a sandwich of passive absorber
material and active high granular sensors which record the energy deposit (the so-called hits).

In previous attempts at generative modelling of calorimeter showers with Deep Learning, the energy
deposits were considered as a 3D grid of voxels and the individual shower as a 3D image. Most
models[3–11] used to study the artificial generation of calorimeter data, were Generative Adversarial
Networks (GANs)[12]. GANs can have relatively flexible architectures and are fast generators,
but they suffer from several shortcomings: incomplete distribution coverage (mode collapse) and
convergence is often difficult to achieve. Recent developments extend the plain GAN approach and
combinations of GANs and Autoencoders [13, 14] are used. A completely different approach are
Normalizing Flows[15] which allow likelihood-based training also on calorimeter data [16, 17]. This
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lead to high quality results. One drawback of the CaloFlow [16] approach and normalizing flows in
general is that they do not scale well to large dimensions and therefore are not directly applicable
for simulating high granular detectors with many active cells, such as the future CMS forward
calorimeter HGCal [18] or the proposed CALICE calorimeter [19]. To scale likelihood-training
to high dimensions, Mikuni et. al.[20] proposed to use score-based diffusion models instead of
normalizing flows[15]. We take a different route of scaling likelihood-base training. All previous
mentioned models are trained on voxel-based data. This has multiple disadvantages. First, a high
granular calorimeter most cells have no entries, therefore the data is sparse. Second, an irregularly
shaped calorimeter is often not directly transferable to voxels. The architecture of the model has to be
developed directly for the calorimeter. So one model is not directly applicable for another calorimeter
dataset. This leads to worse comparison possibilities of the different models. We interpret the hits of
the showers as point clouds. This resolves the sparsity of the data, since empty cells are dropped.
Also, the geometry of the calorimeter is transferable, and the model can be used for different datasets
without altering the model structure.

2 Model

The model here described is based on PointFlow [21]. The target of the PointFlow paper was to model
the surface of objects as point clouds. PointFlow used continuous normalizing flows. In contrast,
Klokov et al.[22] updated the model with discrete normalizing flows. This leads to faster training and
inference.
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Figure 1: A schematic of the model.

Like both models, our model consists of three sub-models, as shown in Fig. 1. The permutation
invariant encoder qφ, which maps the entire point cloud X into the latent representation z. Our
encoder design is based on Particle Flow Networks [23]. The z-representation is enriched with the
number of all hits nhits and the transformed total energy of the hits Esum. The other two models are
both conditional normalizing flows, based on rational quadratic spline (RQS) coupling layers[24]
and ResNet[25] conditioners. To keep the latent space more flexible, z is transformed by the Latent
Flow, similar to the Variational Lossy Autoencoder[26]. The flow is conditioned on the energy of the
incoming electron Ein. The Point Flow transforms each point xi separately, it is conditioned on the
latent variable z, and therefore models the distribution of the points xi conditioned on the distribution
of z.

The model is trained by minimizing the function
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L = −Eqφ(z|X)

[
nhits∑
i

lnN (g−1(xi, z); 0,1) + ln

∣∣∣∣det dg−1(xi, z)

dz

∣∣∣∣
]

︸ ︷︷ ︸
Lrecon

−Eqφ(z|X)

[
lnN (f−1(z, Ein); 0,1) + ln

∣∣∣∣det df−1(z, Ein)

dz

∣∣∣∣]︸ ︷︷ ︸
Lprior

+

(
−d

2
(1 + ln(2π))−

d∑
i=1

lnσi

)
︸ ︷︷ ︸

Lentr

(1)

with the ADAM[27] optimizer. The loss function at hand is based on the loss function of a variational
autoencoder (ELBO). Since normalizing flows are invertible, Lrecon is not trained on reconstructing
the point clouds. Instead, the model is trained to maximize the likelihood of the transformed data
to a Gaussian. With Lprior the model learns a transformation from a Gaussian to the latent space z.
The last part is the entropy of the decoder and acts as a regularization term on the z space. An exact
derivation of the loss function 1 can be found in the appendix A.

All shower hits are generated in parallel and independently of each other. The model cannot take into
account whether a calorimeter cell has already been taken by another generated shower hit. Therefore
we need a special sampling method to get consistent showers.

For shower generation, we want to sample from the probability density of the possible showers.
Therefore, we need the probability that a calorimeter cell was hit and the probability density of the
possible energies in the hit cell. Both quantities are not directly accessible. We approximate these
probabilities with the Point Flow. We sample a relatively large number of points (10k) with their
corresponding probabilities. The average probability of all points in one cell is taken as the probability
of hitting that cell. We sample nhits cells without replacement and with their probability. For each
sampled cell, we then pick an energy value according to all energy values sampled for the hit cell and
their probability. Therefore, we use the model as a Monte Carlo approximator of the showers.

3 Experimental Setup

The CLIC calorimeter data set[10, 28] is used to test the model. In the data, the showering of
electrons entering a section of the CLIC detector were simulated in GEANT4[29]. The energy of the
incoming electrons is between 10 – 510 GeV. The ECAL part of the simulation is used. The resulting
calorimeter images have a dimensionality of (51× 51× 25).

The voxel dataset is transformed into a point cloud dataset. All voxels with energy input are
considered. The 3 position coordinates are uniformly distributed over the voxel space. So that the
resulting distribution fills a unit box. This processing is referred to as dequantization[30]. Since the
energy inputs are greater than zero and decrease exponentially, the logarithm of the energy is used.
The resulting 4D point clouds were then normalized.

pi = norm((xi, yi, zi, ln(Ei)) (2)

The model is trained using four parallel NVIDIA V100 GPUs for a total time of 24 hours. The full
source code for the study alongside the hyperparameter settings is available at
https://github.com/simonschnake/CaloPointFlow.

4 Results and Discussion

For generative models to replace simulations, their outputs must be consistent. To validate this, we
look at different distributions of the generated data.
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Figure 2: the average shower profiles in all three directions are shown. In gray the one of GEANT4.
In red the direct density of the flow. In blue the result of the sampling.

Fig. 2 shows the average shower profile in all directions. The results of the direct density of the model
and the results after sampling from the model are compared with the simulation data. It can be seen
that the model produces matching results, but the tails of the distributions are not well represented by
the sampling.
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Figure 3: Three statistics of the data are shown. On the left, the number of cells with energy in three
energy regimes. In the middle, the summed energy in the cells in the same regimes. On the right, the
distribution of energy inputs in the cells. The color scheme is consistent with Fig. 2.

Fig. 3 compares three statistics of the showers. The first two show that both the number of cells hit
and the sum of the energy in the cells agree well with the results of GEANT4 - both for the direct
density of the model and for the sampled results. The right graph shows that there are significantly
fewer low-energy hits after sampling. This is consistent with the decrease in the tails in Fig. 2.

5 Conclusion and Outlook

The results of the model appear promising. Except for the tails, the model generates showers of a high
quality. A possible further development to get the problems of the model at the tails under control
would be the use of a post-processing network, as shown in [13, 14]. We are currently investigating
the model’s performance on other datasets. This will be part of another publication.

Overall, the model shows good results and can overcome the problems of voxel based models.

6 Broader Impact

Generative models can have negative social impact, by creating deepfakes. However, our work is
dedicated to the application in particle physics does not cause any capabilities beyond those already
reported. Within particle physics, the use of generative models could cause experiments to give false
results. This is a veritable danger and before employing it, the properties of the generated data should
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be studied intensively. The application of the model could lead to better use of computer resources
and thus could reduce CO2 emissions. Likewise, it can lead to a decrease in research costs and allows
for more hypotheses to be tested, thus supporting scientific progress. The positive consequences
clearly outweigh by the negative ones.
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Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] A working point cloud model was shown.

(b) Did you describe the limitations of your work? [Yes] The limitation in modelling the
tails of the distribution are shown in Section 4

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See section
6

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] a link will be
included in the unblind version

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] can be found in the repository

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] This will be explored in the future.
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(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 3

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] The reference to of
the CLIC dataset is listed.

(b) Did you mention the license of the assets? [No] Can be found on the website.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Derivation of the Loss function

The model is co-trained like a variational autoencoder[31] in which the Evidence Lower Bound
(ELBO) is maximized.

The model should model the probability density p(X) of the possible showers X . We construct
the model in the framework of a variational autoencoder [31]. The encoder qφ(z|X) and decoder
pθ(X|z) over the probability distribution of the latent variable p(z) can be trained simultaneously by
maximizing the Evidence Lower Bound (ELBO) on the log-likelihood lnP (X). It is equivalent to
minimize the negative ELBO

L = −Eqφ(z|X)[ln pθ(X|z)] +DKL(qφ(z|X)||p(z)) (3)

= −Eqφ(z|X) [ln pθ(X|z)]︸ ︷︷ ︸
Lrecon

−Eqφ(z|X) [ln pθ(z)]︸ ︷︷ ︸
Lprior

−Eqφ(z|X) [− ln qφ(z|X)]︸ ︷︷ ︸
Lentr

. (4)

The loss function consists of three parts. The first part Lrecon is the reconstruction error of the shower
X . Minimizing Lrecon is equal to generating hits of the shower with a high likelihood. The second
part Lprior is the expectation value of the prior distribution under the approximated distribution of the
encoder. Minimizing Lprior is equal to generating points of z latent space with a high probability. The
last term Lentr is the entropy of the encoded values. It is a regularization on the latent space z.

Here the encoder qφ(z|x) approximates z conditioned on X . To let a sampled value of the auto-
encoder differentiable, we use the reparametrization trick z = µ + ϵ ⊙ σ, where µ and σ are the
outputs of the encoder. ϵ is a normal distributed random value.

The expected value Eqφ(z|X)[ln qφ(z|X)] is the entropy H(qφ(z|X)). Since we approximate the
prior pθ(X) as locally Gaussian, the entropy is given by

Lentr = H(qφ(z|X)) =
d

2
(1 + ln(2π)) +

d∑
i=1

lnσi. (5)

To make the latent distribution p(z) more flexible, the latent z space is constructed as the transforma-
tion of a Gaussian by a normalizing flow f . Therefore, the expectation value of the probability p(z)
can be written as
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Eqφ(z|X)[ln p(z)] = Eqφ(z|X)

[
lnN (f−1(z, Ein); 0,1) + ln

∣∣∣∣det df−1(z, Ein)

dz

∣∣∣∣] . (6)

Here the flow f is also conditioned on the energy of the incoming electron Ein.

The conditional probability density of the entire shower can be separated into the ones of the individual
shower hits

ln pθ(X|z) = ln

nhits∏
i=1

pθ(xi|z) =
nhits∑
i=1

ln pθ(xi|z). (7)

The conditional distribution of the individual hits pθ(xi|z) is approximated by another normalizing
flow

ln pθ(xi|z) = lnN (g−1(xi, z); 0,1) + ln

∣∣∣∣det dg−1(xi, z)

dz

∣∣∣∣ . (8)

Inserting all parts, the loss function is given by

L = −Eqφ(z|X)

[
nhits∑
i

lnN (g−1(xi, z); 0,1) + ln

∣∣∣∣det dg−1(xi, z)

dz

∣∣∣∣
]

︸ ︷︷ ︸
Lrecon

−Eqφ(z|X)

[
lnN (f−1(z, Ein); 0,1) + ln

∣∣∣∣det df−1(z, Ein)

dz

∣∣∣∣]︸ ︷︷ ︸
Lprior

+

(
−d

2
(1 + ln(2π))−

d∑
i=1

lnσi

)
︸ ︷︷ ︸

Lentr

. (9)

8


	Introduction
	Model
	Experimental Setup
	Results and Discussion
	Conclusion and Outlook
	Broader Impact
	Acknowledgement
	Derivation of the Loss function

