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Abstract

A trade-off between speed and information controls our understanding of astronom-
ical objects. Fast-to-acquire photometric observations provide global properties,
while costly and time-consuming spectroscopic measurements enable a better un-
derstanding of the physics governing their evolution. Here, we tackle this problem
by generating spectra directly from photometry, through which we obtain an es-
timate of their intricacies from easily acquired images. This is done by using
multi-modal conditional diffusion models, where the best out of the generated
spectra is selected with a contrastive network. Initial experiments on minimally
processed SDSS galaxy data show promising results.

1 Introduction

Modern digital multi-band astronomical surveys are producing large volumes of photometric data,
and will do so even more in the future. In most cases the scientific exploitation of the photometric
data requires a vast amount of ancillary spectroscopic data, which can better characterize the sources.
The latter, unfortunately, are much more demanding in terms of telescope time and can be acquired
only for a small fraction of the photometric counterparts. To quote an example, the Sloan Digital
Sky Survey (SDSS, Ahumada et al. [2020]), which has one of the richest spectroscopic datasets
to date, has observed more than one billion objects photometrically, while only about two million
objects have been observed together with their spectra. The fact that multi-band photometry may be
assimilated to low-resolution spectroscopy, motivates the search for methods capable of automatically
guessing the shape of a spectrum, provided a significant number of examples. The possibility to use
only photometric data to have a reliable guess of spectra would be useful for many applications, for
instance to determine which objects are likely to be the most interesting, and need to be targeted for
further investigations Masters et al. [2015].

For our approach to this problem we make use of the paradigm of multi-modal learning. Recently,
many multi-modal learning methods have combined all sorts of modalities Bayoudh et al. [2022],
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Figure 1: Training of the conditional diffusion model.

such as text-image Radford et al. [2021], text-video Fan et al. [2019], genome-image Taleb et al.
[2022], and so on. In astronomy, Wu and Peek [2020] attempted to predict galaxy spectra from
images by predicting the latent variables of a variational autoencoder (VAE). A follow-up study
Holwerda et al. [2021] aimed to confirm its practical use.

In this work, we similarly attempt to generate galaxy spectra from images, by directly learning the
relations between spectroscopic and photometric observations of the same object. In particular, we
take inspiration from the text-image models CLIP Radford et al. [2021] and DALL-E Ramesh et al.
[2021]. The images generated from text by the generative model DALL-E are ranked using the
contrastive model CLIP to find the best fitting samples.1 We apply this concept to generate spectra
from multi-band images, and find the best match with a contrastive network.2

2 Method

Data We extracted 64x64 thumbnails of the three inner SDSS bands (g, r and i) for around 500 000
galaxies from the Sloan Digital Sky Survey Data Release 16 (SDSS DR16, Ahumada et al. [2020]),
together with their corresponding spectra. As the SDSS pixel scale is 0.396 arcseconds per pixel, after
random cropping, the images cover ±22.85 arcseconds squared. Since the spectra covered different
wavelength (λ) ranges, we discarded all spectra with a minimum log λ > 3.59, or a maximum below
3.95. Then, we cropped every spectrum to the range between 3.59 and 3.95 and produced a uniform
dataset of 3598-dimensional spectra. We normalized all spectra to the range [−1, 1]. In total, this
resulted in 496599 image-spectra pairs, which we split into a training set of 491599 and a validation
set of 5000 pairs.

2.1 Preliminaries

Denoising diffusion probabilistic models (DDPM) DDPMs, also known as diffusion models, are
a class of generative models, that learn the data distribution through the combination of two parts: a
diffusion and a denoising process Ho et al. [2020]. The diffusion process adds a certain amount of
Gaussian noise to a sample, based on a set variance schedule β1, ..., βT at a timestep t ∈ [1, T ]. This
gradually transforms a sample x0 into a standard Gaussian distribution at xT .

The denoising process aims to reverse this process: given t, it predicts the denoised version x0 from
xt with an autoencoder neural network ϵθ. In practice, this is often learned by predicting the noise
instead Ho et al. [2020], Rombach et al. [2022], with the simplified objective

L = Ex0,t,ϵ∼N (0,I)

(
∥ ϵ− ϵθ(xt, t) ∥2

)
. (1)

From these processes, we can create new samples by sampling from a Gaussian distribution, then
using the diffusion process to go back from xT to x0.

Conditional diffusion models (CDM) While vanilla diffusion models are capable of modelling
and sampling from a data distribution, we are interested in obtaining samples for a specific object.
This can be achieved by sampling from a conditional distribution instead. This is implemented by

1 https://openai.com/blog/dall-e 2 https://github.com/LarsDoorenbos/generate-spectra
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adding a condition to the input of the noise prediction network. Given a condition y, we project it to
a latent embedding using a learnable encoder τθ. This gives the loss function

L = Ex0,y,t,ϵ∼N (0,I)

(
∥ ϵ− ϵθ(xt, t, τθ(y)) ∥2

)
. (2)

We experimented with 2 forms of conditioning. The first projects τθ(y) to the same dimensionality as
x0, and concatenates them channel-wise. The second follows Rombach et al. [2022], and introduces
the condition with cross-attention at multiple layers of the autoencoder.

Contrastive learning Contrastive learning is a framework for self-supervised learning. It optimizes
a network by minimizing the latent distance between two views of the same object, while maximizing
the distances to the latent codes of the other samples in the batch. This is done by minimizing the
contrastive loss for mini-batches of size N Chen et al. [2020],

ℓi,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)
, (3)

for views i and j, where z represents their latent representation, τ the temperature, and sim(·, ·) the
cosine similarity. In the present work, the two views of an object are its image and its spectrum.

2.2 Generating spectra from images

Combining the above, we train a CDM to learn the conditional distribution of spectra given an
image. At inference time, we sample from this distribution a number of times in order to generate
candidate spectra. Then, using the contrastive network, we compute the similarity between the latent
representations of the generated spectra and that of the original image. The closest match is our best
guess of the spectrum. An overview of the CDM training procedure is shown in Figure 1.

3 Experiments

Implementation details We normalize the spectra to the range [−1, 1]. All images are resized to
71x71, random cropped to 64x64 and randomly flipped horizontally and vertically with a probability
of 0.5. We train the CDM using Adam Kingma and Ba [2015] with a learning rate of 10−4, and a
batch size of 256. We use 250 timesteps with a cosine variance schedule. Models are trained for 500k
iterations with 2 NVIDIA GeForce RTX 3090s. The contrastive network is trained with Adam, a
learning rate of 10−4, a weight decay of 10−3, and a batch size of 512.

Compared methods We compare our method against that of Wu and Peek [2020]. They first
train the VAE of Portillo et al. [2020] to learn a distribution over spectra, followed by a network
that predicts the latent code of a spectrum from the associated image. Moreover, we adapt ULISSE
Doorenbos et al. [2022] for this use-case. ULISSE only uses photometry, and finds objects sharing
similar properties by a similarity search in pretrained feature space. To obtain a guess of a spectrum,
we find the nearest neighbour of an image in the feature space of a pretrained EfficientNet-b0, and
use its spectrum as a guess for the spectrum of the query.

Results The quantitative results in Table 1 show that selecting the best spectrum with the contrastive
network improves upon generating single spectra in mean squared error (MSE). We outperform
ULISSE, but the method of Wu and Peek [2020] reaches a lower MSE than ours. The qualitative
results shown in Figure 2 suggest this reduction in MSE is caused by it producing much smoother,
less realistic samples. Metrics like the MSE are known to favor smooth samples Zhang et al. [2018],
and are thus not a perfect metric for our goal. For instance, by taking the mean of the best matching
samples, we can reduce the MSE, but the samples become interpolations of multiple realistic spectra.

The fifth row in Figure 2 shows an unfortunate consequence of the normalization to [−1, 1]. Our
generated spectrum in column (c) generally lies around 0.25 lower than the actual spectrum in (b),
although their shape is similar. Because normalization is done by xnorm = x−xmin

xmax−xmin
, the extrema

of a spectrum have a large impact on what values xnorm will contain. Hence, the relative size of
the peak around log λ± 3.83 would need to be estimated perfectly to get the whole spectrum in the
right place. If done incorrectly, this has a very large negative impact on MSE, despite an otherwise
reasonably well-estimated spectrum.
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Figure 2: Generated spectra for the images in (a). In (b) we show the target (real) spectra, in (c) the
best match according to our contrastive model out of 25 samples, in (d) the spectrum obtained by
averaging the 5 best matches according to the contrastive model, out of 25 samples total, and in (e)
the results with the method of Wu and Peek [2020]. While the MSE of (e) is the lowest, we believe
(c) to be the most useful.

Table 1: Mean and standard deviation over 3 runs of the MSE on the validation set. Contrastive
(n) uses the contrastive network to find the best match out of n samples, Contrastive+Mean (n/m)
averages the best m out of n matches according to the contrastive network.

ϵθ τθ Conditioning Selection MSE

U-net
Falk et al. [2019]

(12.4m)

ResNet-18
He et al. [2016]

(11.2m)

Concat Single 0.179±0.017

Concat Contrastive (5) 0.160±0.010

Concat Contrastive (25) 0.154±0.004

Concat Contrastive+mean (25/5) 0.105±0.003

U-net
Falk et al. [2019]

(23.7m)

ResNet-18
He et al. [2016]

(11.2m)

X-attention Single 0.225±0.014

X-attention Contrastive (5) 0.136±0.008

X-attention Contrastive (25) 0.118±0.010

X-attention Contrastive+Mean (25/5) 0.103±0.008

ULISSE (5.3m) 0.168±0.000

Wu and Peek [2020] (25.6m VAE + 6.8m hybrid-conv) 0.080±0.000

4 Discussion & conclusion

Generating high-dimensional, noisy spectra is a difficult task, especially as we do not employ any
further preprocessing, besides the normalization to [−1, 1]. Other works involving spectra and deep
learning typically use a variety of preprocessing methods, such as low-pass median filtering or
de-redshifting Muthukrishna et al. [2019], Portillo et al. [2020]. However, all preprocessing imposes
some assumptions on the data. As we aim to show our method works on as general a case as possible,
we keep the preprocessing minimal. Nonetheless, with task-specific knowledge, the results can likely
be improved further. For example, the images can at times be extremely faint, thus a selection based
on e.g. redshift would likely boost performance.
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A direct consequence of our normalization is that we are effectively matching images with the correct
shape of spectrum, while ignoring the intensities. This is done for well-behaved training, as done in
other deep learning works involving spectra such as Tan et al. [2022]. However, this might destroy
some important properties for certain use-cases.

Additionally, despite a wide hyperparameter search, we found the VAE architecture of Portillo et al.
[2020] unable to generate high-quality reconstructions of our spectra, producing overly smooth, non-
realistic samples, unlike the diffusion models. We believe this is caused by the higher dimensional
spectra (3598 vs. 1000) and less preprocessing. As Wu and Peek [2020] rely on this VAE, their
method will have this problem as well. Nonetheless, the fact that their MSE is lower shows a
mismatch between the metric and our desired output. This discrepancy prevents proper evaluation of
methods, and solving this is a crucial step in furthering this line of research.

All in all, our method is capable of producing reasonable estimates of spectra directly from photo-
metric observations. With task-specific knowledge and pre-processing, we envision this to be an
exceptionally useful tool for the selection of objects for spectroscopic follow-up.

5 Broader impact

We have applied diffusion models, a class of generative models, to an astronomical use-case. While
generative models as a whole come with substantial ethical dilemmas, such as generating deepfakes
or other harmful content, there are no such clear cases for our domain. Nonetheless, our application
might lead to a better understanding of these models, and shed some light on how and where they can
be used. On the brighter side, our generated spectra might allow for more targeted searches, thus
reducing superfluous spectral acquisition, saving time, carbon and money.
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