
A hybrid Reduced Basis and Machine-Learning
algorithm for building Surrogate Models: a first

application to electromagnetism

Alejandro Ribés
Industrial AI Laboratory SINCLAIR

EDF Lab Paris-Saclay
91120 Palaiseau, France

alejandro.ribes@edf.fr

Ruben Persicot
Ecole des Ponts ParisTech
Marne-la-Vallée, France

ruben.persicot@eleves.enpc.fr

Lucas Meyer
Industrial AI Laboratory SINCLAIR

EDF Lab Paris-Saclay, Univ. Grenoble Alpes,
Inria, CNRS, Grenoble INP, LIG

lucas.meyer@inria.fr

Jean-Pierre Ducreux
EDF Lab Paris-Saclay

91120 Palaiseau, France
jean-pierre.ducreux@edf.fr

Abstract

A surrogate model approximates the outputs of a Partial Differential Equations
(PDEs) solver with a low computational cost. In this article, we propose a method
to build learning-based surrogates in the context of parameterized PDEs, which are
PDEs that depend on a set of parameters but are also temporal and spatial processes.
Our contribution is a method hybridizing the Proper Orthogonal Decomposition
and several Support Vector Regression machines. We present promising results on
a first electromagnetic use case (a primitive single-phase transformer).

1 Introduction

In the context of numerical simulation, a surrogate model approximates the outputs of a solver with a
low computational cost. Solvers of differential equations, for instance, those based on finite element
methods, often require long runs. Thus, they are not well-suited for real-time applications, prediction,
or the resolution of inverse problems requiring multiple executions. In the last five years, the use
of deep learning for constructing surrogate models has gained a lot of attention from industry and
academics. These surrogates learn from simulation results and/or experimental data. One important
example is the seminal work of Raissi et al. [9], which introduces physics-informed neural networks
(PINNs). In the same context, other techniques have been proposed. When the meshes supporting the
numerical simulations are regular the use of traditional deep learning algorithms for image analysis
tasks is possible. For instance, U-Net architectures are employed in [11, 12], or auto-encoders in
[6]. For non-regular meshes Graph Neural Networks (GNNs) [2, 1] have been used. As an example,
Deep-Mind recently introduced a GNN-based framework for learning mesh-based simulations [7, 10].
Numerous methods for building surrogates have been proposed, we just cited some examples to show
their variety.

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.

In this article, we propose a method to build surrogates in the context of parametrized Partial
Differential Equations (PDEs), which are PDEs that depend on a set of parameters (or indexed by a
parameter vector that we call λ). The Reduced Order Model (ROM) community has traditionally
tackled this problem. In fact, a ROM can be considered a type of surrogate model. Quarteroni et
al. [8] give a complete introduction to ROMs in which it is evident that constructing surrogates for
parameterized PDEs is, in the general case, a very complex task. Technical literature on the use of
machine learning techniques for parameterized PDEs is, to our knowledge, much less numerous than
for building surrogates of single spatio-temporal simulations.

Our contribution is a method hybridizing the Proper Orthogonal Decomposition (POD, see chapter 11
of [3]) and several Support Vector Regression machines (SVR, see [4]). This method is non-invasive
because we do not perform Galerkin projection, the Reduced Basis obtained by the POD is only used
to facilitate the training of our Machine-Learning system. Some approaches to building data-driven
surrogates mimic the solver iterative process: they infer the next state of the physical system given its
previous one. We take a less popular approach by directly inferring the state from a time input. Our
system accepts as inputs the time and the vector of parameters to output the current spatio-temporal
and parametric state of the system. We present promising results on a first electromagnetic use case
(a primitive single-phase transformer).

2 Proposed Method

This section presents the technical details of the conceived algorithm that combines model reduction
via the POD and support vector regression (SVR). It consists of two main steps: first, a reduced basis
is found using the POD, and second several SVRs are trained. We remark that prior to these two
steps an ensemble of Nh high-fidelity simulations should be run. It is important to note that we allow
using a different number of simulations in our two steps: NPOD simulations for finding the reduced
basis and NSV R for training the SVRs. This can have a great impact on computing time when a large
number of simulations are treated.

2.1 Finding a Reduced Basis

We obtain a Reduced Basis using the Proper Orthogonal Decomposition (POD), see chapter 11 of
[3] or chapter 6 of [8]. The fundamental step of the POD is the application of a Singular Value
Decomposition [5] to a so-called snapshot matrix. Thus we define here how we construct this matrix
for parameterized problems.

Snapshot matrix for a parametric problem: When dealing with parametric and spatio-temporal
problems, we have an ensemble of N spatio-temporal simulations. In this case, we can build the
snapshot matrix by defining fields indexed by (λ, t), which represents the field of interest provided
by the solver in a linearized vector. We thus build a matrix of snapshots X of size (n,m) by
concatenating each of these vectors as presented below. Note that n is equal to the number of mesh
nodes used to perform the simulations and that m = NhT (number of high fidelity simulations Nh

by number of time steps T).

X =

[
Xλ1,t1 . . . Xλ1,tT . . . XλN ,t1 . . . XλN ,tT

]
(1)

Each column Xλi,tj of X is associated with a vector xi,j = (λi, tj). We can form a matrix x of
parameters from these vectors. In this article, we use NPOD < Nh thus we will denote X by XPOD

to indicate the snapshot matrix used for finding the reduced basis.

SVD: A description of the singular value decomposition (SVD) can be found in any introductory
linear algebra book, such as [5]. Let X ∈ Rn×m, U ∈ Rn×n, V ∈ Rn×m,Σ ∈ Rm×m the SVD of
X is the decomposition X = U · Σ · V T , where U and V are unitary matrices and Σ is a diagonal
matrix containing the singular values of X , which are ordered by decreasing value.

Applying a Singular Value Decomposition to the snapshot matrix allows for finding an orthogonal
basis. However, this basis is of the same size as the original non-transformed problem. The key to
finding a Reduced Basis (RB) comes from the fact that not all the principal components need to be

2

kept. Keeping only the first r principal components, produced by using only the first r eigenvectors,
gives the truncated transformation. The value r is typically found by looking at the accumulated
energy (also called accumulated variance), which is defined by:

E =
σ1 + σ2 + ...+ σr

σ1 + σ2 + ...+ σm
(2)

where the σi (i = 1...m) values are the diagonal elements of the matrix Σ. Once the value r is chosen
we obtain the following approximation of the matrix X:

Xr = Ur · Σr · V Tr. (3)

2.2 Training the SVRs

The SVR being a supervised learning algorithm, it is necessary to constitute (input, output) pairs
for its training. In figure 1, we depict what a single SVR takes in and out. The SVR accepts (t, λ)
as inputs, where t is a time step and λ a vector of parameters. The SVR outputs a prediction ĉi,
corresponding to the i-th coefficient on the reduced space, i = 1...r.

SV R ĉi
t

λ

Figure 1: A SVR takes as input a time step t and one or several parameters λ. It outputs a prediction
ĉi, corresponding to the i-th coefficient on the reduced space, i = 1...r.

Preparing for the training phase. Our idea is to project a snapshot matrix XSV R into the reduced
space C, both these matrices contain NSV R < Nh simulations. XSV R is a sub-sampled version
of the X presented in equation 2.2 and thus present the same encoding. In order to project this
snapshot matrix in the reduced space we use Ur from equation 3. Strictly speaking we should call this
projection matrix Ur

POD because Xr
POD = Ur

POD ·Σr
POD ·V Tr

POD. The operation C = Ur
POD ·XSV D

projects the snapshot matrix on the reduced space. However, we need not only a matrix for training
but also a matrix for validation. The matrix XSV R is therefore subdivided into Xtrain and Xval, thus
X = [Xtrain Xval]. We can then construct the corresponding matrices of coefficients Ctrain

and Cval by matrix product: C = [Ctrain = Ur
POD ·Xtrain Cval = Ur

POD ·Xval].

At this point, we have defined how to form the training and validation sets (matrices in this case) for
the outputs of the SVR. In figure 1, we observe that the SVR accepts (t, λ) as inputs. These inputs
can be coded in the following matrix:

x =

 t1 t2 . . . tP . . . t1 t2 . . . tP

λ1 λ1 . . . λ1 . . . λN λN . . . λN

 (4)

where each column Xλi,tj of X (in equation) is associated with a vector xi,j = (λi, tj). Thus the
matrix x encodes the time and parameters in exactly the same way as X . Similarly, x is therefore
subdivided into xtrain and xval, thus x = [xtrain xval]. Now it is possible to constitute the
training and validation datasets which are respectively (xtrain, Ctrain) and (xval, Cval).

Training of r SVRs The second stage of the training phase is to train r SVRs, one for each line of
Ctrain. For example, the first SVR is trained to predict the first line of Ctrain from xtrain. In other
words, we can say that the i-th SVR is led to predict the value of the parametro-temporal coefficients
of the i-th mode in the reduced space Ur

pod, from the parameter values contained in xtrain. We note
that it is in general necessary to center and reduce the training and validation data sets before training
the SVRs.

3

y

xz

I1(t) I2(t)

Figure 2: Geometry of the use case
Figure 3: Mesh used in the simulations

3 Use case: a single-phase transformer

Our use case is composed of a cylinder and two windings. A winding is one or more turns of wire
that form a continuous coil through which an electric current can pass. As can be seen in Figure
2, only one 2D section of this set is studied, thus the cylinder becomes a torus and the coils are
represented by rectangles. The cylinder is made of metallic material with non-linear permeability. It
is characterized by two Frolich coefficients: α = 0.00025 and β = 0.00018. The part of the domain
not containing the cylinder contains air. The sections of the coils are represented by rectangles. The
electromagnetic problem (a primitive single-phase transformer) is magnetostatic. The wires of each
coil are oriented as shown in Figure 2, a dot indicates that the current is circulating towards the reader.
Each coil has a section equal to 50e− 3 · 100e− 3 m2 = 0.005 m2 and is composed of 1000 turns.
The boundary condition B · n = 0 corresponding to a magnetic wall is imposed on all the boundaries
of the domain. All the simulations were carried out using Code_Carmel (code-carmel.univ-lille.fr).
A magnetic vector potential type formulation A was used, and the numerical problems were solved
by conjugate gradient and using a Jacobi pre-conditioner. The mesh of the use case shown in figure 3
is irregular and composed of extruded triangles. It has 10,840 cells. The amplitude A1 of the current
I1 is varied between 1A and 20A. The amplitude A2 of the current I2 is fixed at 0A. Current I1 is
imposed and is sinusoidal with frequency f = 50Hz (I1(t) = A1 · sin (2πft), I2(t) = 0). Each
simulation is composed of 41 time steps. Among all the information provided by Code_Carmel once
each simulation has been completed, we are only interested here in the magnetic field B (this is one
of the most interesting quantities) and more particularly in Bx, its component along the x-axis, for
the sake of simplicity.

4 Results

We apply the POD to a snapshot matrix built from ten simulations (NPOD = 10), which are run
with different values of A1 ∈ [1, 20]A. We observe a clear decrease in the singular values associated
to the POD decomposition, by choosing the first three we keep more than 99.9% of the variance.
Thus, we train three SVRs taking the same two inputs (the electric current λ = I1 and the time step
t), and each SVR outputs one of the singular values. One hundred simulations are used to train
the SVRs (NSV R = 100) using the method described in section 2. For this, A1 is drawn from a
uniform distribution in the interval [1, 20]A. The choice of the interval [1, 20]A is justified by the
current-voltage characteristic of the constituent material of the cylinder. The operating range of
the material is between 0A and approximately 7A, beyond which there is saturation. Thus, this
interval contains material non-linearities. We run the algorithm in a single GPU node of CRONOS
(a supercomputer included in the list www.top500.org) and the training took less than 2 seconds.
However, we have not yet performed testing on large simulations. Figure 4 shows that the algorithm
succeeds in learning the temporal evolution of the coefficients of the first three modes in the reduced

4

Figure 4: Temporal evolution of the coefficients of the first three modes (A1 = 11.36A, r=3, s=0.5)

base. We observe that the fitting of the evolution of the coefficients is excellent. Furthermore, the
mean root square error on the validation set is 8.95 · 10−5, which is a remarkably small error for this
use case. However, these results are preliminary and, even promising, more extensive testing and
probably an evolution of the presented algorithm will be necessary.

5 Conclusion

We have conceived a method that combines model reduction via the Proper Orthogonal Decomposi-
tion (POD) and Support Vector Regression (SVR). The aim is the construction of a learning-based
surrogate model for parameterized PDEs, which are also temporal and spatial processes. This method
is non-invasive and uses a direct-time estimation strategy. We have performed tests on a first paramet-
ric electromagnetic use case, which presents dependence on a single parameter (an electric current)
and contains material non-linearities. Obtained results are promising. However, we have presented
ongoing research and these results are still preliminary.

6 Acknowledgments

This work was partially funded by REGALE (https://regale-project.eu/), part of the European High-
Performance Computing Joint Undertaking (JU) under grant agreement No 956560.

References
[1] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius

Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[2] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017.

[3] Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering: Machine
Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.

[4] Harris Drucker, Christopher J Burges, Linda Kaufman, Alex Smola, and Vladimir Vapnik.
Support vector regression machines. Advances in neural information processing systems, 9,
1996.

[5] Gilbert and Strang. Introduction to linear algebra, volume 3. Wellesley-Cambridge Press
Wellesley, MA, 1993.

[6] Byungsoo Kim, Vinicius C Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and Barbara
Solenthaler. Deep fluids: A generative network for parameterized fluid simulations. In Computer
Graphics Forum, volume 38, pages 59–70. Wiley Online Library, 2019.

5

[7] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-
based simulation with graph networks. In International Conference on Learning Representations,
2020.

[8] Alfio Quarteroni, Andrea Manzoni, and Federico Negri. Reduced Basis Methods for Partial
Differential Equations: an introduction.

[9] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[10] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter Battaglia. Learning to simulate complex physics with graph networks. In International
Conference on Machine Learning, pages 8459–8468. PMLR, 2020.

[11] Nils Thuerey, Konstantin Weißenow, Lukas Prantl, and Xiangyu Hu. Deep learning methods for
reynolds-averaged navier–stokes simulations of airfoil flows. AIAA Journal, 58(1):25–36, 2020.

[12] Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 1457–1466, 2020.

6

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] In the Results section: results are
preliminary and, even promising, more extensive testing and probably an evolution of
the presented algorithm will be necessary.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] We do
not see any societal impacts by now

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] I think it conforms

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] No theoretical
results

(b) Did you include complete proofs of all theoretical results? [N/A] No theoretical results

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No] I work in an
industry and should ask for the necessary permissions before, it is possible in case of
publication

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Section 2 gives a completed detailed description

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A] This is not a possible strategy for numerical simulations,
which tend to be large and expensive to run

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Results section: We run the
algorithm in a single GPU node of CRONOS (a supercomputer included in the list
www.top500.org)

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] for instance we cite
Code Carmel, the solver we use

(b) Did you mention the license of the assets? [No] I could not find the exact licence that
is used

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
Not necessary because data is provided by one coautor

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We have their consent and data is provided by one coautor

7

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] It is clear to the reader that it does not contain
it, our data is not about people

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

8

	Introduction
	Proposed Method
	Finding a Reduced Basis
	Training the SVRs

	Use case: a single-phase transformer
	Results
	Conclusion
	Acknowledgments

