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Abstract

Stochastic evolution equations describing the dynamics of systems under the
influence of both deterministic and stochastic forces are prevalent in all fields of
science. Yet, identifying these systems from sparse-in-time observations remains
still a challenging endeavour. Existing approaches focus either on the temporal
structure of the observations by relying on conditional expectations, discarding
thereby information ingrained in the geometry of the system’s invariant density; or
employ geometric approximations of the invariant density, which are nevertheless
restricted to systems with conservative forces. Here we propose a method that
reconciles these two paradigms. We introduce a new data-driven path augmentation
scheme that takes the local observation geometry into account. By employing
non-parametric inference on the augmented paths, we can efficiently identify the
deterministic driving forces of the underlying system for systems observed at low
sampling rates.

1 Introduction
Stochastic differential equations are particularly expressive dynamical models naturally fit for repre-
senting systems evolving on multiple time-scales [1–4]. Extracting stochastic evolution equations
from such systems has been of major interest in most sciences [5–15]. While identification of
continuous time deterministic models has been largely resolved in the past [16–19], the same is not
true for their stochastic counterparts. Inference of stochastic systems is particularly challenging in
settings where observations are collected at low sampling rates (at large inter-observation intervals).

Most of the existing methods for identifying the deterministic driving forces of stochastic systems
rely either on approximations of the invariant density (e.g., density estimation [20] or spectral
methods like diffusion maps [21–25]) (geometric methods), or consider the temporal structure
of the observations by computing conditional expectations of state increments [26–37] (temporal
methods). However, geometric methods are limited only to systems with conservative forces by
assuming either that the drift is the gradient of a potential [20, 24, 38], or that state variables are
completely decoupled [21]. On the other hand, temporal methods perform poorly in settings with
large inter-observation intervals (sparse observations) [39], since the state increments computed
from the observations in those settings (see Appendix Eq. (11)) do not reflect the actual underlying
dynamics (Fig. 1).

To mitigate the effect of sparse observations, a subset of the temporal methods employs path
augmentation2 to approximate the transition densities between successive observations by sampling
diffusion bridges, i.e., diffusion processes constrained by their initial and terminal state [31–35]. Yet,
the majority of the non-parametric approaches employ simplified bridge dynamics (e.g., Brownian [31,

∗https://dimitra-maoutsa.gitlab.io/
2Here we employ the term path augmentation to refer to what is widely known as data augmentation. We

resorted to this term because we consider it as more elegant and better descriptive of the proposed augmentation
process, while the term ’data augmentation’ is considerably vague.
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35] or Ornstein-Uhlenbeck bridges [39]) that do not accurately reflect the underlying transition
densities when the observed system is nonlinear (Fig. 2 c. and d.).

Figure 1: Considered state in-
crements for low frequency ob-
servations under Gaussian likeli-
hood assumptions. Euclidean dis-
tance (yellow line) - used to com-
pute the state increments between
successive observations - does not
account for the curvature of the in-
variant density. The geodesic curve
(purple line) provides a better ap-
proximation of the unobserved state
of the system between successive
observations (light green line).

An alternative path augmentation strategy would consider a
coarse drift estimate (e.g., by assuming a Gaussian likelihood
between observations, see Eq. (2)), and would subsequently em-
ploy a stochastic bridge sampler [40–42] to construct stochastic
bridges with the estimated nonlinear drift. However, for large
inter-observation intervals, the observations have zero proba-
bility under the law of the estimated diffusion (Fig. 2 b.). Con-
sequently, any attempt to construct diffusion bridges between
consecutive observations following the estimated dynamics will
– depending on the employed framework – either show slow
convergence rates, or fail altogether.

Here we propose an alternative approach. We postulate that
the augmented paths should lie in the vicinity of the geodesic
curves (Fig. 1b. magenta) that connect consecutive observa-
tions on the manifold induced by the invariant density of the
system. To that end we introduce a path augmentation frame-
work that constructs geometrically constrained bridges 3 by
forcing the augmented paths towards the respective geodesics
that connect consecutive observations (Fig. 2 e.). To that end we
employ the stochastic control framework introduced in [40, 41]
with path constraints that guide the augmented paths towards
the geodesic curves that connect successive observations.

2 Setting
We consider stochastic systems described by stochastic differ-
ential equations (SDE) of the form

dXt = f(Xt)dt+ σ dβt, X0 = x0 , (1)
where f(·) : Rd → Rd denotes the deterministic driving forces (drift function), and σdβt represents
the random forces acting on the system (diffusion). Here σ ∈ Rd×d denotes the noise amplitude, and
β the d-dimensional vector of independent Wiener processes. Onwards we consider Ito interpretation
of stochastic integrals. We observe the system through an observation process Ok = ψ(Xkτ ), where
Xkτ =̇Xt|t=τk, with k = 1, 2, . . . ,K observations measuring the system state at inter-observation
intervals τ . For simplicity, we consider identity functions for the observation process, i.e., ψ(x) = x,
but the formalism easily generalises for more general functions.

High-frequency observations. For sufficiently fine observation timegrids, we assume that observa-
tions represent the system state in continuous time, i.e., that we observe the continuous path X0:T .
Thereby we can estimate the drift by approximating the first order Kramers-Moyal coefficient [43]
through empirically estimating conditional expectations of state increments [27–29, 44]. Analogous
Bayesian non-parametric methods [45] consider that the transition probabilities between observations
are Gaussian for dt→ 0, resulting in a (Gaussian) likelihood for the observations (see Sec. A Eq. 7)

L(X0:T | f) = exp

[
−1

2

∫ T

0

∥f(Xt)∥2σ2dt+
∫ T

0

⟨f(Xt), Xt+dt −Xt⟩dt
]
, (2)

and impose a Gaussian process prior on the function values f (Eq. (12)). In Eq. (2) we introduced
the notation ⟨u, v⟩=̇u⊤ · σ−2v and ∥u∥σ2=̇u⊤ · σ−2u.
Low-frequency observations. As the inter-observation interval τ increases, the Gaussian likelihood
(Eq. (2)) assumed between two successive observations is no longer valid if Eq. (1) is non-linear.
Similarly, the state increments Xt+τ −Xt computed in this setting do not accurately represent the
underlying dynamics (Fig. 1 a.). The likelihood for the drift P({Ok}Kk=1|f) for such settings takes
the form of a path integral

P({Ok}Kk=1 | f) =
∫

P({Ok}Kk=1, X0:T | f)D(X0:T ) =

∫
P({Ok}Kk=1 | X0:T )P(X0:T |f)D(X0:T ), (3)

3Formally these constructs are no longer diffusion bridges but constrained diffusion paths. Here we overex-
tend the notion of diffusion bridges to contrast it against the commonly employed diffusion bridges for path
augmentation.
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a. b. c. d. e.

Figure 2: Existing path augmentation strategies match poorly the underlying transition density
between consecutive observations underestimating its curvature. a.) Stochastic bridge marginal
density (grey) between two successive observations O1 and O2 (pink triangles) following the ground
truth dynamics. b.) Forward probability flow with estimated dynamics with a Gaussian likelihood
(maroon) matches poorly the correct transition density and often fails to reach the second observation
O2 (downward pink triangle). Common path augmentation strategies employ either: c.) Brownian
bridges, or d.) Ornstein Uhlenbeck (linear) bridge marginals resulting from local linearisations of
the estimated drift with Gaussian likelihood. Both approaches match poorly the correct transition
density, because they underestimate its curvature. e.) The proposed geometrically constrained path
augmentation provides a better approximation of the underlying transition density by forcing the
bridge paths towards the geodesic curve that connects consecutive observations on the manifold
induced by the observations.

where {Ok}Kk=1 denotes the set of K discrete time observations, P(X0:T |f) the prior path probability
resulting from the system of Eq. (1), D(X0:T ) identifies the formal volume element on the path space,
while P({Ok}Kk=1|X0:T ) stands for the likelihood of observations given the latent path X0:T .

From a geometric perspective, we can consider that the invariant density of the system can be
approximated with a (low dimensional) manifold induced by the nonlinear system dynamics. The
observations are essentially samples of that manifold. For low-frequency observations, Euclidean
distances employed for computing the state increments Xt+τ −Xt do not consider the geometry
induced by the nonlinear dynamics, and thereby underestimate the curvature of the transition density
between consecutive observations (Figure 1).

3 Method
Since the likelihood of Eq. (3) is intractable, we consider the unobserved continuous path as latent
random variables X0:T , and employ Expectation Maximisation (EM) [46] to identify a maximum a
posteriori estimate for the drift function. Similar parametric [33, 47] and non-parametric [39, 45]
methods have addressed the drift inference in the past, targeting mainly high-frequency observation
settings. Our approach here is inspired by the non-parametric method followed in [39, 45] with two
key innovations:

(i) We employ a path augmentation scheme following the estimated nonlinear dynamics
resulting from inference with the Gaussian likelihood of Eq. (2) (as opposed to local linear
approximations of these dynamics proposed in [39]).

(ii) Importantly, we further constrain the augmented paths to match the geometry of the
invariant density between consecutive observations (Fig. 1 b.).

We follow an iterative algorithm, where at each iteration n we perform the two following steps:
(1.) An E(xpectation) step, where given a drift estimate f̂n we construct an approximate posterior
over the latent variables Q(X0:T ) ≈ P(X0:T |{O}Kk=1, f̂

n(x)).
(2.) A M(aximisation) step, where we update the drift estimation.
• Approximate posterior over paths. (E-step) We approximate the continuous path trajectory
X0:T between observations by a posterior path measure defined as the minimiser of the free energy

F [Q] =
1

2

T∫
0

∫ [
∥g(x, t)− f̂(x)∥2σ2 + UO(x, t) + UG(x, t)

]
qt(x) dx dt. (4)
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Figure 3: Proposed path augmentation after two iterations already provides a good approxima-
tion of underlying drift. Estimated (red) and true (grey) force field with a.) Gaussian likelihood b.)
after one and c.) after second iteration of augmentations. (insets) Ground truth against estimated
angles for each point on the two dimensional grid. e.) Weighted root mean square error (wRMSE)
for estimated drifts after each iteration for the presented example. The weights for averaging the
error at each grid point are obtained from a kernel density estimation on the observations {Ok}Kk=1.
d.) wRMSE against inter-observation interval τ for different noise conditions σ = {0.25, 0.5} for
drift estimated with a Gaussian likelihood (gaus-circles), after first augmentation (1st-triangles), and
after second augmentation (2nd-squares) for T = 500. f.) wRMSE against noise amplitude σ in the
system for different trajectory durations T = {500, 1000} time units for inter-observation interval
τ = 240. Markers follow the same coding as in d.). Errorbars indicate one standard deviation over 5
independent realisations.

The term UO(x, t)=̇−
∑

tk
lnP(Ok|x)δ(t− tk) forces the latent path to pass through the observa-

tions (or close to them depending on the observation process), while UG(x, t)=̇∥Γt − x∥2 guides the
latent path towards the geodesic curves γkt′ that connect consecutive observations on the manifold
M induced by the system’s invariant density (Sec. A.1.2). Here we denote Γt=̇{γkt′}t=(k−1)τ+t′τ ,
where γkt′ is the geodesic connecting Ok and Ok+1, and t′ ∈ [0, 1]. We identify the geodesic γkt′ for
each interval by learning the local metric of the manifold M (see Sec. A.1.2 and [48]).

Following [49], for each inter-observation interval [Ok,Ok+1] we identify the posterior path measure
(minimiser of Eq. (4)) by the solution of a stochastic optimal control problem [14, 40, 41] with
the objective to obtain a time-dependent drift adjustment u(x, t) := g(x, t)− f̂(x) for the system
with drift f̂(x) with initial and terminal constraints determined by UO(x, t), and additional path
constraints UG(x, t).

• Drift estimation. (M-step) To estimate the drift from a sampled latent path, we assume a
Gaussian process prior over function values and employ a sparse kernel approximation similar to [39]
(see Sec. A.2 for details).

4 Numerical experiments

To demonstrate the performance of the proposed method we performed systematic estimations for
a two-dimensional Van der Pol oscillator under different noise conditions σ, observed at different
inter-observation intervals τ for different lengths of trajectories T (see Sec. D). For the examined
noise amplitudes (Fig. 3 f.) and for inter-observation intervals that result in more than one observation
per oscillation period (Fig. 3d.), the proposed path augmentation algorithm improves the naive
estimation with Gaussian assumptions within two iterations for most noise amplitudes(Fig. 3). For
increasing noise the improvement contributed by our approach decreases (Fig. 3f.), but is nevertheless
not negligible.
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5 Conclusion and Discussion
We introduced a new method for identifying stochastic systems from sparse-in-time observations of
the system’s state. We proposed a path augmentation strategy that employs the nonlinear dynamics of
a coarse drift estimate, and further constrains the augmented paths to follow the local geometry of the
system’s invariant density. We found that the proposed approach provides efficient recovery of the
underlying drift function for periodic or quasi-periodic systems under several noise conditions.
Geometric constraints for inference. Our method reconciles approaches that rely purely on the
temporal structure of the observations with those that approximate the invariant density and ignore the
temporal order of measurements. With the recent development of the field of geometric statistics [50,
51], and the surge of interest on the concept of manifold hypothesis [52, 53], i.e., the consideration
that often the state of multi-dimensional dynamical systems is confined on low dimensional regions
of the state space, several inference methods have tried to merge geometric and temporal perspectives
for identification of stochastic systems. In the Langevin regression framework [54], Callaham et al.
compute the Kramers-Moyal coefficients, and account for misestimation due to low sampling rate
by solving the adjoint Fokker-Planck equation for the coefficients as proposed by Lade [55]. They
incorporate geometric constraints by additionally regularising by moment matching between the
observation density and the stationary Fokker-Planck probability density of the estimated SDE model.
In [56] Tong et al. consider the manifold of the observations for inference of cellular dynamics. Their
method employs dynamic optimal transport to interpolate between measured distributions constrained
to lie in the vicinity of the observations. This approach has the same intuitions with our method,
however Tong et al. do not employ stochastic differential equations to model the inherently stochastic
cellular dynamics. Moreover they do not attempt any modeling of the underlying geometry of the data,
but consider only constraints that penalise distances to individual observations. Shnitzer et al. [53,
57] employ diffusion maps to approximate the eigenfunctions of the backward Kolmogorov operator
(the generator of the stochastic Koopman operator [58, 59]), and - since the eigenfunctions follow
linear evolution equations - they evolve the dominant operator eigenspectrum with a Kalman filter to
account for the temporal order of the observations. However their approach is limited to conservative
systems, and assumes the existence of a spectral gap on the spectrum of the approximated operator,
excluding thereby systems with continuous spectra, e.g. chaotic systems [60, 61].
Geodesic curves and the most probable path in the Onsager-Machlup sense for stochastic
processes. The theoretical underpinnings of our work can be traced back to the work of Onsager
and Machlup [62] and the computation of the most probable path (MPP) of a diffusion process
between two predetermined states. Earlier work has employed the Onsager-Machlup (OM) function
as Lagrangian to derive an expression for the MPP in terms of state variables and the drift of the
diffusion process [63–69]. The resulting Lagrangian involves the energy of the path (see Sec. B),
which is the same objective used to identify geodesics (see Sec. A.1.2). In our framework, to
identify the geodesics between successive observations we assumed as smooth manifold the Rd

with associated Riemannian metric h learned from the data. However the underlying SDE is defined
on Rd under the Euclidean metric [70]. Different metrics in the definition of diffusion processes
result in different generators, and thus in different path probabilities for each process. It would be an
interesting theoretical result to calculate the transformation induced by the changing the Riemannian
metric in the definition of the process. To the best of our knowledge such a result is not available
in the literature, but is also not trivial. The change of metric induces a change in the diffusivity of
the process, so a direct Girsanov transformation is not feasible. Yet, it may be possible to employ an
inverse Lamperti transformation [71] to express the drift of the process in terms of a diffusion with
multiplicative noise that would have induced the change in metric learned from the observations (see
Sec. B). Finally, the connection to the OM functional already hints to an alternative method to obtain
an estimate for the unknown drift with geometric considerations that obviates the computationally
costly simulation of continuous paths.
Limitations. Our approach is limited to systems where the invariant density can be approximated by
a manifold on which one can identify geodesics. Additionally by construction the method implicitly
assumes that the invariant system’s density is approximately uniformly sampled. However we foresee
that by employing more advanced tools from geometric statistics [50, 51] the framework may be
applicable for non-uniformly sampled invariant densities. Our experiments have shown that the
proposed approach is better suited for systems with cyclic balance [72], i.e., with stationary fluctuating
probability currents in the steady state. Systems with non-fluctuating currents in the stationary state
are nevertheless effectively recovered with existing methods that rely on assumptions of conservative
forces.
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Broader Impact Statement

We introduced a new path augmentation method that allows for efficient inference of stochastic
systems observed at large inter-observation intervals. Our contribution aims to highlight the need for
incorporating notions from the rapidly developing field of geometric statistics into the area of model
discovery of stochastic systems. While geometric and topological properties of invariant densities
for deterministic systems have been exceedingly studied in the past, the same is not true for their
stochastic counterparts, and in particular of systems described by stochastic differential equations.

Our work aims further to highlight that data augmentation frameworks in settings where the amount
of augmented data dominates the number of observations may lead to more accurate inferences
by incorporating domain knowledge or other type of information in the augmentation (like here
information regarding the geometry of the system’s invariant density). Many of the algorithms
employed with data augmentation frameworks exhibit only local convergence, e.g., the Expectation
Maximisation algorithm employed here [81]. In settings where the initial estimate strongly deviates
from its true value, naive data augmentation strategies might therefore converge to sub-optimal
solutions, that do not reflect the ground truth.

We do not foresee any direct social impact of our work. However we acknowledge that stochastic sys-
tems may be used for military purposes and financial engineering, however the proposed method does
not directly propose interventions to the observed system that may lead to unfavourable consequences.

Diffusive systems are prevalent in several scientific fields, such as parts of physics, biology, neuro-
science, and ecology. We foresee that this work may benefit these disciplines by providing a tool for
identifying systems of interest.
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A Drift inference for high and low frequency observations

We consider systems whose evolution is captured by the stochastic differential equation Eq. (1).

High frequency observations. When the system path X0:T is observed in continuous time, the
infinitesimal transition probabilities of the diffusion process between consecutive observations are
Gaussian, i.e.,

Pf (X0:T | f) ∝ exp

(
− 1

2dt

∑
t

∥Xt+dt −Xt − f(Xt)dt∥2σ2

)
. (5)

In turn, the transition probability of (discretised) Wiener paths PW(X0:T ) (i.e., paths from a drift-less
process) can be expressed as

PW(X0:T ) = exp

(
− 1

2dt

∑
t

∥Xt+dt −Xt∥2σ2

)
, (6)

where ∥u∥σ2=̇u⊤ ·σ−2u denotes the weighted norm with D=̇σ2 indicating the noise covariance. We
can thus express the likelihood for the drift f by the Radon-Nykodym derivative between Pf (X0:T |f)
and PW(X0:T ) for paths X0:T within the time interval [0, T ] [82]

L(X0:T | f) = exp

[
−1

2

∑
t

∥f(Xt)∥2σ2dt+
∑
t

⟨f(Xt), Xt+dt −Xt⟩σ2

]
, (7)

where for brevity we have introduced the notation ⟨u, v⟩=̇u⊤ · σ−2v for the weighted inner product
with respect to the inverse noise covariance σ−2. This expression results from applying the Girsanov
theorem on the path measures induced by a process with drift f and a Wiener process, with same
diffusion σ, and employing an Euler-Maruyama discretisation on the continuous path X0:T .

The likelihood of a continuously observed path of the SDE (Eq. (7)) has a quadratic form in terms
of the drift function. Therefore a Gaussian measure over function values (Gaussian process) is a
natural conjugate prior for this likelihood. To identify the drift in a non-parametric form, we assume a
Gaussian process prior for the function values f ∼ P0(f) = GP(mf , kf ), where mf and kf denote
the mean and covariance function of the Gaussian process [45]. The prior measure can be written as

P0(f) = exp

[
−1

2

∫ ∫
f(x)

(
kf (x, x′)

)−1
f(x′)dxdx′

]
, (8)

if we consider a zero mean Gaussian process mf = 0.
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Bayesian inference for the drift function f requires the computation of a probability distribution in
the function space, the posterior probability distribution Pf (f | X0:T ). From the Bayes’ rule the
posterior can be expressed as

Pf (f | X0:T ) =
P0(f)L(X0:T | f)

Z
∝ P0(f)L(X0:T | f), (9)

where Z denotes a normalising factor defined as a path integral

Z =

∫
P0(f)L(X0:T | f)Df, (10)

where Df denotes integration over the Hilbert space f : H0[f ] <∞ . Here we have expressed the
prior probability over functions as P0(f) = e−H0[f ]. In [45] the authors show that in the continuous
time limit, nonparametric estimation of drift functions becomes equivalent to Gaussian process
regression, with the objective to identify the mapping from the system state Xt to state increments
dXt [83]. More precisely, we consider N observations of the system state Xt as the regressor, with
associated response variables

Yt =
Xt+dt −Xt

dt
, (11)

and denote the kernel function of the Gaussian process by k(x, x′).

If we denote with X = {Xt}T−dt
t=0 and Y = {Yt}T−dt

t=0 the set of state observations and observation
increments, the mean of the posterior process over drift functions f can be expressed as

f̄(x) = kf (x,X )⊤
(
K +

σ2

dt
IN

)−1

Y, (12)

where we abused the notation and denoted with kf (x,X ) the vector resulting from evaluating the
kernel kf at points x and {Ot}K−1

k=1 . Similarly K = kf (X ,X ) stands for the (K − 1) × (K − 1)
matrix resulting from evaluation of the kernel on all observation pairs. In a similar vein, the posterior
variance can be written as

Σ2(x) = kf (x, x)− kf (x,X )⊤
(
K +

σ2

dt

)−1

kf (x,X ), (13)

where the term σ2/dt plays the role of observation noise.

Low frequency observations. When the inter-observation interval becomes large (low frequency
observations), the Gaussian likelihood of Eq. (7) becomes invalid, since for large inter-observation
intervals the transition density is no longer Gaussian. Thus, drift estimation with Gaussian assump-
tions [26, 45] becomes inaccurate. To mitigate this issue Lade [55] introduced a method to compute
finite time corrections for the drift estimates, which has been applied (to the best of our knowledge)
mostly to one dimensional problems [84]. On the other hand, the statistics community has pro-
posed path augmentation schemes that augment the observed trajectory to a nearly continuous-time
trajectory by sampling a simplified system’s dynamics between observations [31–35]. However
for large inter-observation intervals and for nonlinear systems the simplified dynamics employed
for path augmentation match poorly the underlying path statistics, and these methods show poor
convergence rates or fail to identify the correct dynamics (Figure 2 c. and d.). We point out here,
that path augmentation with Ornstein Uhlenbeck bridges using as drift the local linearisation of the
correct dynamics, provides a good approximation of the underlying transition density. However,
during inference, the true underlying dynamics are unknown, and the proposed local linearisations on
inaccurate drift estimates [39] perform poorly for low frequency observations.

Notice that as the inter-observation interval τ increases, the Gaussian likelihood assumed between
two successive observations is no longer valid if the system is non-linear or when the noise is state
dependent. The likelihood for the drift for such settings can be expressed in terms of a path integral

P(O1:K | f) =
∫

P(O1:K | X0:T )P(X0:T | f)D(X0:T ), (14)

where O1:K=̇{Ok}Kk=1 denotes the set of K discrete time observations, P(X0:T | f) the prior path
probability resulting from a diffusion process with drift f(x), D(X0:T ) identifies the formal volume
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element on the path space, and P(O1:K | X0:T ) stands for the likelihood of observations given the
latent path X0:T .

However, the path integral of Eq. (14) is intractable for nonlinear systems, thus we need to simultane-
ously estimate the drift and latent state of the diffusion process, i.e., to approximate the joint posterior
measure of latent paths and drift functions P(X0:T , f | O1:K). Therefore we consider the unobserved
continuous path X0:T as latent random variables and employ an Expectation Maximisation (EM)
algorithm to identify a maximum a posteriori estimate for the drift function. More precisely, we
follow an iterative algorithm, where at each iteration n we alternate between the two following steps:

An Expectation step, where given a drift
estimate f̂n(x) we construct an approx-
imate posterior over the latent variables
Q(X0:T ) ≈ P(X0:T | O1:K , f̂

n(x)), and com-
pute the expected log-likelihood of the aug-
mented path

L
(
f̂n(x), Q

)
= EQ

[
lnL

(
X0:T | f̂n(x)

)]
.

(15)

A Maximisation step, where we update the drift
estimation by maximising the expected log likeli-
hood

fn+1(x) = argmax
f

[
L
(
fn(x), Q

)
−lnP0

(
fn(x)

)]
.

(16)

In Eq. (16) P0 denotes the Gaussian process prior over function values.

A.1 Approximate posterior over paths.

Here we first formulate the approximate posterior over paths (conditional distribution for the path
given the observations) by considering only individual observations as constraints (Section A.1.1).
However, this approach results computationally taxing calculations during path augmentation, since
the observations are atypical states of the initially estimated drift. To overcome this issue, we
subsequently extend the formalism (Section A.1.2) to incorporate constraints that consider also the
local geometry of the observations.

A.1.1 Approximate posterior over paths without geometric constraints.

Given a drift function (or a drift estimate) f̂(x) we can apply variational techniques to approximate
the posterior measure over the latent path conditioned on the observations O1:K . We consider that the
prior process (the process without considering the observations O1:K) is described by the equation

P(X0:T | f̂) : dXt = f̂(Xt)dt+ σdβt. (17)

We will define an approximating (posterior) process that is conditioned on the observations. The
conditioned process is also a diffusion process with the same diffusion as Eq. (17) but with a
modified, time-dependent drift g(x, t) that accounts for the observations [85, 86]. We identify the
approximate posterior measure Q with the posterior measure induced by an approximating process
that is conditioned by the observations O1:K [49], with governing equation

Q(X0:T ) : dXt = g(Xt, t)dt+ σdβt =
(
f̂(Xt) + σ2u(Xt, t)

)
dt+ σdβt. (18)

The effective drift g(Xt, t) of Eq. (18) may be obtained from the solution of the variational problem
of minimising the free energy

F [Q] = KL
(
Q(X0:T )||P(X0:T | f̂)

)
−

K∑
k=1

EQ[lnP(Ok | Xtk)]. (19)
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By applying the Cameron-Girsanov-Martin theorem we can express the Kullback-Leibler divergence
between the two path measures induced by the diffusions with drift f̂(x) and g(x, t) as

KL
(
Q(X0:T )||P(X0:T |f̂)

)
= EQ

ln

 dQ(X0:T )

dP
(
X0:T |f̂

)
 (20)

= EQ

[
exp

(
−1

2

∫ T

0

∥f̂(Xt)− g(Xt, t)∥2σ2dt+
∫ T

0

f̂(Xt)− g(Xt, t)

σ2
dβt

)]
(21)

= EQ

[
exp

(
−1

2

∫ T

0

∥f̂(Xt)− g(Xt, t)∥2σ2dt+ VT

)]
(22)

=
1

2

T∫
0

∫
∥g(x, t)− f̂(x)∥2σ2 qt(x) dx dt+ C, (23)

where qt(x) stands for the marginal density for Xt of the approximate process. In the third line
we have introduced the random variable VT =

∫ T

0
f̂(Xt)−g(Xt,t)

σ2 dβt. Under the assumption that
the function ℓ(Xt) = f̂(Xt)− g(Xt, t) is bounded, piece-wise continuous, and in L2[0,∞) , VT
follows the distribution N

(
VT | 0,

∫ T

0
ℓ2(s)ds

)
, which for a given T will result into a constant C.

Thus the second term in Eq. (23) is not relevant for the minimisation of the free energy and will be
omitted.

We can thus express the free energy of Eq. (19) as [49]

F [Q] =
1

2

T∫
0

∫ [
∥g(x, t)− f̂(x)∥2σ2 + U(x, t)

]
qt(x) dx dt, (24)

where the term U(x, t) accounts for the observations U(x, t) = −
∑
tk

lnP(Ok | x)δ(t− tk).

The minimisation of the functional of the free energy can be construed as a stochastic control
problem [49] with the objective to identify a time-dependent drift adjustment u(x, t) := g(x, t)−f̂(x)
for the system with drift f̂(x) so that the controlled dynamics fulfil the constraints imposed by the
observations.

For the case of exact observations, i.e., for an observation process ψ(x) = x, we can compute the drift
adjustment for each of the K − 1 inter-observation intervals independently. Thus for each interval
between consecutive observations, we identify the optimal control u(x, t) required to construct a
stochastic bridge following the dynamics of Eq. (17) with initial and terminal states the respective
observations Ok and Ok+1.

The optimal drift adjustment for such a stochastic control problem for the inter-observation interval
between Ok and Ok+1 can be obtained from the solution of the backward equation (see [40, 41])

∂ϕt(x)

∂t
= −L†

f̂
ϕt(x) + U(x, t)ϕt(x), (25)

with terminal condition ϕT (x) = χ(x) = δ(x − Ok+1) and with L†
f̂

denoting the adjoint Fokker-
Planck operator for the process of Eq. (17). As shown in Maoutsa et al. [40, 41] the optimal drift
adjustment u(x, t) can be expressed in terms of the difference of the logarithmic gradients of two
probability flows

u∗(x, t) = D
(
∇ ln qT−t(x)−∇ ln ρt(x)

)
, (26)

where ρt fulfils the forward (filtering) partial differential equation (PDE)

∂ρt(x)

∂t
= Lf̂ρt(x)− U(x, t)ρt(x), (27)
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while qt is the solution of a time-reversed PDE that depends on the logarithmic gradient of ρt(x)

∂qt(x)

∂t
= −∇ ·

[(
σ2∇ ln ρT−t(x)− f(x, T − t)

)
qt(x)

]
+
σ2

2
∇2qt(x), (28)

with initial condition q0(x) ∝ ρT (x)χ(x) .

A.1.2 Approximate posterior over paths with geometric constraints.

The previously described construction of the approximate measure in terms of stochastic bridges is
relevant when the observations have non vanishing probability under the law of the prior diffusion
process of Eq. (17). However, when the prior process (with the estimated drift f̂ ) differs considerably
from the process that generated the observations, such a construction might either provide a bad
approximation of the underlying path measure, or show slow numerical convergence in the construc-
tion of the diffusion bridges. To overcome this issue, we consider here additional constraints for the
posterior process that force the paths of the posterior measure to respect the local geometry of the
observations. In the following we provide a brief introduction on the basics of Riemannian geometry
and consequently continue with the geometric considerations of the proposed method.

Riemannian geometry. A d-dimensional Riemannian manifold [87, 88] (M, h) embedded in a
D-dimensional ambient space X = RD is a smooth curved d-dimensional surface endowed with
a smoothly varying inner product (Riemannian) metric h : x → ⟨·|·⟩x on TxM. A tangent space
TxM is defined at each point x ∈ M. The Riemannian metric h defines a canonical volume measure
on the manifold M. Intuitively this characterises how to compute inner products locally between
points on the tangent space of the manifold M, and therefore determines also how to compute norms
and thus distances between points on M.

A coordinate chart (G,ϕ) provides the mapping from an open set G on M to an open set V in
the Euclidean space. The dimensionality of the manifold is d if for each point x ∈ M there exists
a local neighborhood G ⊂ Rd. We can represent the metric h on the local chart (G,ϕ) by the
positive definite matrix (metric tensor) H(x) = (hi,j)x,0≤i,j,≤d =

(
⟨ ∂
∂xi

| ∂
∂xj

⟩x
)
0≤i,j,≤d

at each

point x ∈ G.

For v, w ∈ TxM and x ∈ G, their inner product can be expressed in terms of the matrix representation
of the metric h on the tangent space TxM as ⟨v|w⟩x = v⊤H(x)w, where H(x) ∈ Rd×d .

The length of a curve γ : [0, 1] → M on the manifold is defined as the integral of the norm of the
tangent vector

ℓ(γt′) =

∫ 1

0

∥γ̇t′∥hdt′ =
∫ 1

0

√
γ̇⊤t′H(γt′)γ̇t′dt′, (29)

where the dotted letter indicates the velocity of the curve γ̇t′ = ∂t′γt′ . A geodesic curve is a locally
length minimising smooth curve that connects two given points on the manifold.

Riemannian geometry of the observations. For approximating the posterior over paths we take
into account the geometry of the invariant density as it is represented by the observations. To that end,
we consider systems whose dynamics induce invariant (inertial) manifolds that contain the global
attractor of the system and on which system trajectories concentrate [89–94]. We assume thus that
the continuous-time trajectories X0:T ∈ Rd of the underlying system concentrates on an invariant
manifold M ∈ Rm≤d of dimensionality m (possibly) smaller than d. The discrete-time observations
Ok are thus samples of the manifold M. The central premise of our approach is that unobserved
paths between successive observations will be lying either on or in the vicinity of the manifold
M. In particular, we postulate that unobserved paths should lie in the vicinity of geodesics that
connect consecutive observations on M. To that end we propose a path augmentation framework
that constraints the augmented paths to lie in the vicinity of identified geodesics between consecutive
observations.

However, while this view of a lower dimensional manifold embedded in a higher dimensional ambient
space helps to build our intuition for the proposed method, for computational purposes we adopt
a complementary view inspired by the discussion in [95]. According to this view, we consider
the entire observation space Rd as a smooth Riemannian manifold, M=̇Rd, characterised by a
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Riemannian metric h. The effect of the nonlinear geometry of the observations is then captured by
the metric h. Thus to approximate the geometric structure of the system’s invariant density, we learn
the Riemannian metric tensor H : Rd → Rd×d and compute the geodesics between consecutive
observations according to the learned metric. Intuitively according to this view the observations
{Ok}Kk=1 introduce distortions in the way we compute distances on the state space.

In effect this approach does not reduce the dimensionality of the space we operate, but changes
the way we compute inner products and thus distances, lengths, and geodesic curves on M. The
alternative perspective of working on a lower dimensional manifold would strongly depend on the
correct assessment of the dimensionality of said manifold. For example, one could use a Variational
Autoencoder to approximate the observation manifold and subsequently obtain the Riemannian metric
from the embedding of the manifold mediated by the decoder. However, our preliminary results
of such an approach revealed that such a method requires considerable fine tuning to adapt to the
characteristics of each dynamical system and is sensitive to the estimation of the dimensionality of
the approximated manifold.

To learn the Riemannian metric and compute the geodesics we follow the framework proposed by
Arvanitidis et al. in [48]. In particular, we approximate the local metric induced by the observations
at location x of the state space, in a non-parametric form by the inverse of the weighted local diagonal
covariance computed on the observations as [48]

Hdd(x) =

(
K∑
i=1

wi(x)
(
x
(d)
i − x(d)

)2
+ ϵ

)−1

, (30)

with weights wi(x) = exp
(
−∥xi−x∥2

2

2σ2
M

)
, and x(d) denoting the d-th dimensional component of the

vector x. The parameter ϵ > 0 ensures non-zero diagonals of the weighted covariance matrix, while
σM characterises the curvature of the manifold.

Between consecutive observations for each interval [Ok,Ok+1], we identify the geodesic γkt′ as
the energy minimising curve, i.e., as the minimiser of the kinetic energy functional E(γkt′) =∫ 1

0
LM(γkt′ , γ̇

k
t′)dt

′

γk∗t′ = argmin
γk
t′ ,γ

k
0=Ok,γk

1=Ok+1

∫ 1

0

LM(γkt′ , γ̇
k
t′)dt

′,

with
∫ 1

0

LM(γkt′ , γ̇
k
t′)dt

′ =
1

2

∫ 1

0

∥γ̇kt′∥2h, (31)

where LM(γkt′ , γ̇
k
t′) denotes the Lagrangian. The minimising curve of this functional is the same as

the minimiser of the curve length functional ℓ(γt′) (Eq. (29)), i.e., the geodesic [87].

By applying calculus of variations, the minimising curve of the functional E(γkt′) can be obtained
from the Euler-Lagrange equations, resulting in the following system of second order differential
equations [87, 96]

γ̈t
k = −1

2
H(γkt )

−1

(
2
(
I ⊗ (γ̇t

k)⊤
) ∂vec[H(γkt )]

∂γkt
γ̇t

k − ∂vec[H(γkt )]
⊤

∂γkt

(
γ̇t

k ⊗ γ̇t
k
))

, (32)

with boundary conditions γk0 = Ok and γk1 = Ok+1, where ⊗ stands for the Kroenecker product,
and vec[A] denotes the vectorisation operation of matrix A through stacking the columns of A into a
vector. Arvanitidis et al. [48] obtain the geodesics by approximating the solution of the boundary
value problem of Eq. (32) with a probabilistic differential equation solver.

Extended free energy functional. We denote the collection of individual geodesics by
Γt=̇{γkt′}t=(k−1)τ+t′τ , where γkt′ is the geodesic connecting Ok and Ok+1, and t′ ∈ [0, 1] de-
notes a rescaled time variable. Additional to the constraints imposed in the previously explained
setting (Sec A.1.1), here we add an extra term in the free energy UG(x, t)=̇∥Γt − x∥2 that accounts
for the local geometry of the invariant density, and guides the latent path towards the geodesic curves
γkt′ that connect consecutive observations

F [Q] =
1

2

T∫
0

∫ [
∥g(x, t)− f̂(x)∥2σ2 + UO(x, t) + βUG(x, t)

]
qt(x) dx dt. (33)
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Here we denote the observation term by UO(x, t)=̇−
∑

tk
lnP(Ok|x)δ(t− tk), while β stands for a

weighting constant that determines the relative weight of the geometric term in the control objective.

Following [49], for each inter-observation interval [Ok,Ok+1] we identify the posterior path measure
(minimiser of Eq. (33)) by the solution of a stochastic optimal control problem [40] with the objective
to obtain a time-dependent drift adjustment u(x, t) := g(x, t)− f̂(x) for the system with drift f̂(x)
with initial and terminal constraints defined by UO(x, t), and additional path constraints UG(x, t).

A.2 Approximate posterior over drift functions.

For a fixed path measure Q, the optimal measure for the drift Qf is a Gaussian process given by

Qf ∝ Pf exp

(
−1

2

∫
∥f(x)∥2σ2A(x)− 2⟨f(x), B(x)⟩σ2dx

)
, (34)

with

A(x)=̇

∫ T

0

pt(x)dt,

and

B(x)=̇

∫ T

0

pt(x)g(x, t)dt,

where pt(x) denotes the marginal constrained density of the state Xt. The function g(x, t) denotes
the effective drift.

We assume a Gaussian process prior for the unknown function f , i.e., f ∼ P0(f) = GP(mf , kf )
wheremf and kf denote the mean and covariance function of the Gaussian process. Following Ruttor
et al. [45], we employ a sparse kernel approximation for the drift f by optimising the function values
over a sparse set of S inducing points {Zi}Si=1. We obtain the resulting drift from

f̂S(x) = kf (x,Z) (I + ΛKS)
−1

d, (35)

where we have defined introduced the notation KS=̇k
f (Z,Z)

Λ =
1

σ2
K−1

S

(∫
kf (Z, x)A(x)kf (x,Z)dx

)
K−1

S . (36)

d =
1

σ2
K−1

S

(∫
kf (Z, x)B(x)dx

)
K−1

S , (37)

The associated variance results similarly from the equation

Σ2
S(x) = kf (x, x)− kf (x,Z) (I + ΛKS)

−1
Λ kf (Z, x). (38)

We employ a sample based approximation of the densities in Eq. (34) resulting from the particle
sampling of the path measure Q. Thus by representing the densities by samples, we can rewrite the
density pt(x) in terms of a sum of Dirac delta functions centered around the particles positions

pt(x) ≈
1

N

N∑
j=1

δ(x−Xj(t)),

and replace the Riemannian integrals with summation over particles. Here Xj(t) represents the
position of the j-th particle at time point t.

B Theoretical evidence that supports the use of geodesics as geometric
constraints

The Onsager-Machlup functional for diffusion processes has been known in theoretical physics as a
characteriser of the most probable path (MPP) between two pre-defined states of the process. In [62],
Onsager and Machlup used the thermal fluctuations of a diffusion process to show that the probability
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density of a path γ ∈ C1
(
[0, T ],Rd

)
in Rd over finite interval can be expressed as a Boltzmann

factor

P(γ) ∼ exp

[
−
∫ T

0

L(γ(t), γ̇(t))dt

]
, (39)

where

L(γ(t), γ̇(t)) =
1

2
∥ γ̇(t)− f(γ(t))

σ
∥2 + 1

2
∇ · f(γ(t)).4 (40)

The function L(γ(t), γ̇(t)) is known as the Onsager-Machlup function (action), while its integral
over time is known as Onsager-Machlup action functional. It has been used as Lagrangian in Euler-
Lagrange minimisation schemes to identify the most probable path (MPP) of a diffusion process
between two given points in the state space [66, 68].

Stratonovich [68] considered the probability that a sample of a multidimensional diffusion process
will lie in the vicinity of (within a tube of infinitesimal thickness around) an idealised smooth path in
the state space. To compute this probability he constructed a probability functional which is identical
to the Onsager-Machlup functional considered as Lagrangian for the diffusion process. Duerr et
al. [65] considered scalar diffusion processes and constructed the Onsager-Machlup function from
the asymptotic limit of the transition probability between the starting and end state of the path using a
Girsanov transformation.

Considering diffusion processes defined on a Riemannian manifold (M, g) with associated Rie-
mannian metric g, the Onsager-Machlup functional can be expressed as the integral over the La-
grangian [64, 99, 100]

L(γ, γ̇) =
1

2
∥γ̇(t)∥2g −

1

12
S(γ(t)), (41)

where ∥ · ∥g denotes the Riemannian norm on the tangent space TXM of the manifold with respect
to the metric g, and S(·) stands for the scalar curvature of the manifold at each point. The first term
is the Lagrangian used to identify geodesic curves on manifolds (c.f. Eq. (A.1.2))

In our proposed formalism, for computational purposes we have assumed the entire Rd as smooth
manifold. Thus the curvature of the manifold is everywhere zero for our setting, and we can identify
the remaining term of Eq. (41) with the Lagrangian we optimised for computing the geodesics on the
manifold (Rd, g), where g is the metric learned from the observations.

However the system we observed was a diffusion process defined in Rd with an Euclidean metric.
Constructing a path augmentation scheme that guides the augmented paths towards the geodesics
of a diffusion defined with respect to a different metric raises questions about the validity of our
approach. Here we should note that diffusions with a general state dependent diffusion coefficient
σ ∈ Rm×d, with m ≤ d can be considered as evolving on the manifold (Rm, g), with the associated
metric g =

(
σσ⊤)−1

[70]. Thus it may be possible to associate the metric learned from the data with
the metric arising from a state dependent diffusion by applying a transformation akin to an inverse
Lamperti transform [71] to transform our learned SDE to one that would have induced the learned
metric due to the state dependent diffusion. The existence of such a transformation would justify the
proposed method. Our empirical results demonstrate that such a transformation may be possible.

C Does the proposed approach invalidate the Markovian property of the
diffusion process?

The proposed path augmentation seemingly invalidates the Markovian property of the diffusion
process. According to the Markov property of the diffusion of Eq. (1), the system state Xkτ+δt

should depend only the state Xkτ , i.e., the observation Ok. The proposed augmentation makes the
state Xkτ+δt depending not only on the next observation Ok+1 = X(k+1)τ , but also on past and
future states that lie in the vicinity of these observations.

We effectively construct the augmented paths to compute the likelihood of a drift estimate. To compute
this likelihood we require to evaluate the transition probabilities between consecutive observations.

4Onsager and Machlup’s initial work concentrated around linear processes and therefore the functional
initially introduced by the did not include the second term with the divergence of f as this is a constant for linear
f . It was later added to the OM function to account for trajectory entropy corrections [97, 98]
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Since for general nonlinear systems the transition probabilities are in general intractable, we have to
resort to numerical approximations. Ideally we would approximate the transition density with a bridge
sampler that would consider the nonlinear estimated SDE conditioned to pass though consecutive
observations. However for coarse drift estimates, the observations have zero probability under the
law of the estimated SDE, and construction of those bridges would result either in very taxing
computations or would fail altogether. Instead, here, we compute the likelihood of a "corrected"
estimate (the correction resulting from the invariant density) under which the observations have non-
zero probability, and subsequently re-estimate the drift on the augmented path with this "corrected"
estimate. By taking into account the local geometry of the observations, we provide systematic
corrections for the misestimated drift function to generate the augmented paths. This effectively
nudges the augmentation process towards the second observation of each inter-observation interval
through the path constraint that forces the augmented paths towards the geodesics.

D Details on numerical experiments

We simulated a two dimensional Van der Pol oscillator with drift function

f1(x, y) = µ(x− 1

3
x3 − y) (42)

f2(x, y) =
1

µ
x, (43)

starting from initial condition x0 = [1.81,−1.41] and under noise amplitudes σ =
{0.25, 0.50, 0.75, 1.00} for total duration of T = {500, 1000} time units. The employed inter-
observation intervals τ = {80, 120, 160, 200, 240, 280, 320}. The last inter-observation interval
exceeds the half period of the oscillator and thus samples only a single state per period. This resulted
in erroneous estimates. In this setting this indicates the upper limit of τ for which we can provide
estimates. However for any inference method, if the observation process samples only one observation
per period, identifying the underlying force field without additional assumptions is not possible with
temporal methods. The discretisation time-step used for simulation of the ground truth dynamics, and
path augmentation δt = 0.01. For sampling the controlled bridges we employed N = 100 particles
evolving the associated ordinary differential equation as described in [40, 101]. The logarithmic
gradient estimator used M = 40 inducing points. The sparse Gaussian process for estimating the
drift was based on a sparse kernel approximation of S = 300 points. In the presented simulation we
have employed a weighting parameter β = 0.5 (Eq. (33)). This provides a moderate pull towards
the invariant density. The example in Figure 2 was constructed with β = 1 and provides a better
approximation of the transition density, than β = 0.5.
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