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Abstract

We demonstrate that Bayesian networks fill a significant methodology gap for
uncertainty quantification in particle physics, providing a framework for model-
ing complex systems with physical constraints. To address the problem of in-
teraction position reconstruction in dark matter direct-detection experiments, we
built a Bayesian network that utilizes domain knowledge of the system in both
the structure of the graph and the representation of the random variables. This
method yielded highly informative per-interaction uncertainties that were previ-
ously unattainable using existing methodologies, while also demonstrating com-
parable precision on reconstructed positions.

1 Introduction

While machine learning research has led to many recent advancements in physical science research,
the efficacy of most machine learning methodologies for science is limited by their inability to
quantify uncertainties on the parameters they estimate. Within the physical sciences, uncertainties
are crucial for hypothesis testing and arise from several sources including limitations in the ability
to observe and model systems, as well as inherent nondeterminism. Observations may be uncertain
due to only some aspects of the system being observed, measurement error, or measurements having
finite resolution. Therefore, it is imperative to have machine learning approaches that take into
account both the different possible states of the system and the probabilities of each possible state.

To account for uncertainties, one may construct a probabilistic model representing the joint distribu-
tion over the variables in the system. For complex systems with hundreds of variables, constructing
the joint distribution is often intractable. Approaches to handling this intractability generally rely on
scientists comparing the summary statistics of observed data to those of simulated data [1].

Alternatively, Bayesian networks (BNs) — one of the two broad classes of Probabilistic Graphi-
cal Models (PGMs) — use a graph-based representation of the joint distribution as the basis for
compactly encoding a high-dimensional distribution. As PGM representations are generalizable and
encode domain knowledge of the system, they enable understanding and evaluation of the properties
of a complicated distribution, as well as construction of accurate models of a system.
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Both neural networks (NNs) and BNs have been in widespread use since at least the late 1980s.
For BNs, the development of a rigorous formalism for probabilistic reasoning by Judea Pearl [2],
covering representation and inference, was key to the methodology gaining acceptance. It is impor-
tant to note that Bayesian networks are not the same as Bayesian NNs — which are NNs that have
posterior distribution of weights. While NNs provide a generalizable framework for many classes
of problems, they were not designed to provide information about the reliability of their predictions.
These methods of uncertainty quantification can lack transparency and the uncertainties predicted
by NNs often require re-calibration before being used for analysis [3–5].

Contribution We demonstrate the utility of BNs as a methodology to address questions within the
physical sciences where uncertainty quantification is crucial. We specifically explore the problem of
position reconstruction — an inverse problem where location is inferred or estimated based on sen-
sor measurements — within astroparticle physics. Robust position reconstruction is paramount for
enabling rare-event discoveries by dark matter detection experiments, as it allows for focus on inter-
actions occurring only within the central volume of a detector where there are fewer backgrounds.

Related Work Within astrophysics BNs have been used in the form of Bayesian hierarchical models;
recent examples include deriving luminosity-metallicity relations of RR Lyrae stars [6], developing
an SED model for type Ia supernovae [7], clarifying the Hubble constant tension [8], and type Ia su-
pernova cosmology fits [9, 10]. Furthermore, they have been used to develop trustworthy estimates
of redshift distributions [11]. Outside of astrophysics, Bayesian networks have been used for model-
ing of nuclear data [12] and to establish the significance of coincident events by gravitational-wave
detectors [13].

Within the field of particle physics, there have been significant efforts to apply modern machine
learning techniques, demonstrated by the hundreds of papers in Ref. [14]. However, work on uncer-
tainty awareness and quantification when using machine learning techniques has been primarily on
estimating uncertainty using deep learning ([15]; e.g., LHC searches [16], and neutrino reconstruc-
tion [17]).

2 Brief Review of Bayesian Networks

BNs use a directed acyclic graph to encode a probability distribution [18, 19] by making use of the
independencies between variables [20–23]. The directed edges in BNs correspond to direct influence
of one variable on another, allowing the networks to be used as interpretable models of physical
systems for reasoning about causes and effects within systems [2, 24]. By utilizing the conditional
independencies between the variables, the graphical representation of the joint distribution is more
compact than the full joint distribution over the variables. The local probability information is a
conditional distribution given the immediate parents of the node, i.e. P (Xi | Parents(Xi)). Each
entry in the joint distribution is defined as the product of the local conditional distributions,

P (X1 = x1, . . . , XN = xN ) =

N∏
i=1

P (xi | parents(Xi)) , (1)

where parents(Xi) are the values of the parent nodes, Parents(Xi), that appear in x1, . . . , xn.
Moreover, the posterior distribution over a variable of interest conditioned on an observation can
be computed by performing a probability query. This is performed by computing the posterior
distribution over the values of the query variables, Y = {Y1, . . . , YM}, conditioned on the observed
values, {x1, . . . , xN}, of the evidence variables, X = {X1, . . . , XN}: P (Y1, . . . , YM | X1 =
x1, . . . , XN = xN ). Thus, the BN framework is well-suited for determining the probability of any
one of several causes being a contributing factor to an observed event.

3 Building a Bayesian Network for Position Reconstruction

A major and novel component of this work is representing the position reconstruction problem using
the BN framework.

Data For dark matter direct detection experiments such as XENONnT [25] or LZ [26], the two-
dimensional position of a particle interaction within the cylindrical detector can be inferred from the
light detected by the photosensor array on the top of the detector, commonly called a hit pattern [27].
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Using Ref. [28] we simulated a data set based on the detector geometry of XENONnT, comprised
of the ground-truth position of each physical interaction, the ground-truth number of electrons sub-
sequently produced, and the set of associated photosensor measurements. The spatial location of
a particle interaction within the detector is denoted as a two-dimensional position in polar coordi-
nates. The positions were randomly generated from a uniform distribution over the detector area.
The number of electrons were generated from a uniform random distribution from 1 to 2000 elec-
trons, which includes the range caused by both dark matter particle interactions as well as common
sources of background. See Section 3 of Ref. [29] for a detailed description of the data generation
process. We generated training and testing sets of 5× 106 and 5× 104 interactions, respectively.

Nodes We include nodes representing the interaction position, the number of electrons, and the
photosensor measurements. Which variables to include and the set of values that each of the vari-
ables can take on are crucial choices in framing the problem. These choices allow us to encode
physical constraints into the BN. As this is a proof-of-concept, we include a limited number of
variables to decrease the complexity of the problem.

The interaction position is represented by the random variable L. We represent locations within the
detector as discrete values by dividing the detector into 1 cm2 pixels, a size chosen to provide the
minimum precision necessary for the position reconstruction to be useful in experimental analyses.
An advantage to discretizing a continuous random variable is that the conditional probabilities can be
specified explicitly for each value, without defining a parametric form. Thus, the two-dimensional
position of the interaction is represented by the single discrete multinomial random variable L which
maps each particle interaction to the pixel of its ground-truth spatial location. The set of possible
values that L can take is {0, . . . , 13845}, the indices corresponding to the discrete pixels.

The number of electrons produced by the interaction is represented by the random variable E, which
maps each particle interaction to its ground-truth number of electrons. The set of possible val-
ues that E can take is all positive integers. In addition, we define a set of 253 random variables,
S = {S0, . . . , S252}, which maps each particle interaction to the ground-truth photosensor mea-
surement, with all non-negative integers as the set of possible values.

Figure 1: Graph structure used in this work.

Graph Structure The graph structure we choose,
shown in Fig. 1, provides a compact representation of
a high-dimensional joint distribution using the strong
assumption that each S node is conditionally inde-
pendent of all other S nodes, given the L and E
nodes. This simple graph structure has been proven
to be quite effective for classification in practice, even
in cases where the independence assumptions are vi-
olated [30]. Its advantages are that it is easier to in-
terpret, faster to learn and query, and smaller to store
in memory than a more complex structure.

Local Probability Distributions Both L and E have no parent nodes, thus the local probability
distributions are priors — they are not dependent on other random variables. We define the prior
over L to be the fraction of training set interactions within each pixel and the prior over E to be
a uniform distribution from 1 to 2000 electrons. The S nodes each have both L and E as parent
nodes. To make the network both faster to query and smaller to store in memory, we represent the
local probability distribution for the S nodes with a Poisson distribution. This choice also allows
us to encode domain knowledge of the system, as the number of photons detected by a sensor over
a given time period is well represented as a Poisson distribution. The Poisson distribution has one
parameter λ, which is both the expected value and the variance, and is a distribution over non-
negative integers. We define the local probability distribution at each S node, given any assignment
to the L and E nodes, to be

P (Sj = sj | L = l, E = e) =
(λl,j,e)

sj exp (−λl,j,e)

sj !
, (2)

where λl,j,e is learned from the training data.
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Probability Queries The posterior distribution over the L and E nodes, given the observed values
of the S nodes, s0, . . . , s252, is

P (L, E | S0 = s0, . . . , S252 = s252) = P (L, E)
∏
j

P (Sj = sj , L, E). (3)

The distribution in (3) is a categorical distribution which assigns the probabilities from the joint dis-
tribution over L and E. The marginal probability distribution over L can be calculated by summing
over the set of possible values of E.

4 Results

We built a Bayesian network with the structure shown in Fig. 1 and local probability distributions
learned from the simulation. We then performed probability queries to attain the posterior distribu-
tion over position and number of electrons for the interactions in the test set.

Fig. 2 shows the marginal distribution over L given the photosensor measurements (left) visualized
as a heatmap out to the limits of the 5-σ confidence interval (center) for an example interaction
from the test set. The root mean square (RMS) of the differences between the ground-truth position
and expectation value of the position for the test set is 0.753 cm. This is dominated by the 1 cm2

pixel area and reduced by increasing the number of pixels. A feature of the method which resulted
from our decision to discretize the value of the position node is that it naturally constrains the
reconstructed position to be within the physical volume of the detector, in contrast to NNs which
often produce nonphysical results [27] or require a customized layer to place physical constraints
on outputs [29]. Fig. 2 also presents a comparison of two sets of photosensor measurements: the
first is a simulated interaction and the second is the same interaction with the intensities randomly
reassigned to different sensors. One major shortcoming of other existing reconstruction methods is
that they only provide a single point estimate for the interaction position, which can be particularly
uninformative when the photosensor measurements have no corresponding particle interactions (i.e.,
noise). Fig. 2 demonstrates that BNs overcome this shortcoming by providing informative posteriors
for position reconstruction even in the case of noise, which could make the posteriors useful for
anomaly detection.

5 Conclusion

We found the BN framework to be well suited to uncertainty quantification of position reconstruction
in an astroparticle experiment. The reconstructed positions inferred by our model have precision
comparable to existing reconstruction methods for dark matter detection experiments [27, 29, 31],
and can be improved by using a smaller pixel size. More importantly, the posterior distributions
over position are informative and enable a variety of experimental analyses ranging from anomaly
detection to determining the boundaries of the fiducial volume, the central region of a detector where
there are fewer backgrounds. We found that our choice of representation for the values of the nodes
(as a categorical distribution in the case of L) and the local probability distributions (as a Poisson
distribution in the case of S) greatly impacted both the computational efficiency of the inference and
the accuracy of the inferred positions. This method can be extended to energy and three-dimensional
position reconstruction, as well as signal classification. Improvements to the reconstructed positions
can be made by utilizing a more complex graph structure. For example, adding edges between sensor
nodes to account for correlations between sensors and adding nodes for experimentally relevant
variables. Alternatively, the structure can be learned directly from data.

The BN framework is based on a formalism for probabilistic reasoning and can incorporate scien-
tists’ knowledge about the system to build a physically interpretable model. Based on this proof-
of-concept, we conclude that the BN framework, while not applicable to all analyses, is a well
suited uncertainty quantification method for a variety of other reconstruction tasks where per-event
uncertainties are crucial.

Broader Impact

There are numerous applications of the BN framework within particle physics, as well as more gen-
erally throughout the physical sciences. As uncertainty quantification using BNs and other methods
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Figure 2: Set of photosensor measurements (left), posterior distribution over position (center), and
posterior distribution over number of electrons (right) for a simulated interaction (top row) and
scrambled photosensor measurements where the intensities measured by the sensors are randomly
reassigned (bottom row). This demonstrates that, unlike reconstruction methods that only provide
a point estimate, the Bayesian network method can provide an informative position reconstruction
even in the bottom case where there is no interaction signal in the photosensor measurements. True
position and true number of electrons are shown as a black diamonds and vertical black line in the
top row. The bottom row has no ground-truth position or ground-truth number of electrons. The
expectation value of position is shown as a green triangle in both center panels. The top center panel
inset shows the sensor positions as filled grey circles.

is further developed specifically for applications within the physical sciences, we anticipate that
scientists will increasingly account for uncertainties in their analyses and hypothesis testing, which
will in turn enhance scientific research as a whole. We do not envision that this methodology will
result in any negative ethical or societal impacts in the future.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information
on how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section X.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Limitations are discussed in

Sec. 3 and Sec. 4.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] These will be
available as a public GitHub repository following the publication of the full work.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [No] . The general approach to training is discussed in Sec. 3 and full
details will be provided with the code.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] This is listed on the Zenodo page of

the assests.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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