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Abstract

We approach particle reconstruction in collider experiments as a set-to-set problem
and show the efficacy of a deep-learning model that predicts hypergraph incidence
structure. This model outperforms a benchmark parameterized algorithm in predict-
ing the momentum of particle jets and shows an ability to disentangle individual
neutral particles in the collimated environment. Representing particles as hyper-
edges on the set of input nodes introduces an inductive bias that predisposes the
predictions to conserve energy and thus promotes accurate, interpretable results.

1 Introduction

Inferring a set of particles based on a set of energy deposits in a detector is foundational to analysis
of data from collider experiments. However, particle reconstruction is complicated by a number of
factors: the high multiplicity and collimated signatures intrinsic to hadron collisions, the presence
of simultaneous scattering events (pileup), and the extensive, irregular array of sensitive elements
required for a highly-granular, full-coverage detector. Experiments at the Large Hadron Collider
currently employ parameterized “particle-flow” algorithms which exploit complementary information
provided by different detector subsystems [1, 2].

As in other applications to particle physics, deep learning (DL) brings to the particle-flow paradigm
the potential to replace parameterized cuts (for example in energy subtraction schemes) with decision
boundaries that leverage the full set of relevant features in data. The expressiveness of DL models
also opens new possibilities such as reconstructing neutral particles inside of jets.

Previous work A proof of concept for a DL-based particle-flow algorithm was provided by [3] at
the level of calorimeter cells from overlapping charged and neutral pions. Different proposals have
since addressed the fuller set-to-set problem of predicting reconstructed particle candidates based
on a typically much larger set of detector-level entities. In [4], the object condensation approach
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was proposed for semi-supervised clustering of nodes in latent space to form candidate objects. This
was recently applied to the task of predicting calorimeter clusters in CMS data [5, 6], where the
authors focused on reconstruction efficiency and energy regression of showers from single particles
embedded in pileup. The reduction in size from input to output set is handled in the MLPF [7]
approach by assigning input nodes to particles in the output set or else to a dedicated “neglect class”.
The MLPF approach was also recently tested on CMS data [8], for the task of predicting the outputs
of a traditional particle-flow algorithm.

In our hypergraph-based approach, HGPflow, each particle in the output set is represented by a
collection (i.e. hyperedge) of the input nodes. This learned map from input to output set can be fully
supervised and allows the network to exploit the relationship between target particle properties and
input node features.

2 Dataset

Detector simulation Events containing a single initial state quark (E ∈ [10, 200] GeV, pseudorapid-
ity η ∈ [−2.5, 2.5]), followed by parton shower and hadronization are generated using PYTHIA8 [9].
The resulting jet of final state particles enters a tracking cylinder of radius 150 cm immersed in a
uniform axial magnetic field of 3.8T wherein material interactions are emulated solely by a track
momentum resolution of σ(p)

p = p · 10−5/[GeV]. A GEANT4-based calorimeter model then sim-
ulates the particles in a subsequent iron layer and 6 concentric calorimeter layers. The cylindrical
layers have uniform granularity in η and azimuthal angle ϕ ranging from 256× 256 in the first layer
to 64× 64 in the last. All final state particles with transverse momentum pT > 1 GeV that reach the
calorimeter are targets for the network.

Graph creation In each event, a topological clustering algorithm, closely resembling [10], is used
to group calorimeter cells into “topoclusters” based on their proximity and deposited energy. To form
an input graph, each cell (track) is connected to a maximum of 8 (4) nearest cells in the first three
calorimeter layers and 6 (3) in the next three. Additionally, cells are connected to their single nearest
neighbor in the immediately adjacent layer(s). Topoclusters are represented in the input graph by a
separate set of nodes with edges connecting each to the set of cells belonging to the topocluster.

3 Hypergraph particle-flow network

A hypergraph is a generalization of a graph where hyperedges can each connect one, two, or multiple
nodes (fig. 1b). The connectivity between N nodes from K hyperedges is described by an incidence
matrix I(N×K). In the context of particle reconstruction, calorimeter deposits and tracks are nodes
in the hypergraph, while each particle is represented by a hyperedge connecting the set of nodes to
which that particle contributed. We work with topoclusters rather than cells in the input set, to reduce
dimensionality and to study the task of learning a non-injective map from particles to nodes.

Node encoding Fig. 1a depicts the architecture of the node encoding model used in the HGPflow
network. First, two separate networks are used to embed the feature vectors of cells and tracks into a
common representation space of dimension 100. Cell input features are (energy,position,η,ϕ,layer).
The track input features are (pT,η,ϕ,d0,z0)1 and the extrapolated η and ϕ coordinates of the track at
each calorimeter layer. Four successive message-passing blocks are then used to update each node
using its own representation, those of its neighbors, and the global representation. Following the
message-passing blocks, topocluster representations are computed by the energy-weighted mean of
the cell representation vectors belonging to the topocluster.

Incidence matrix prediction The first objective of the HGPflow network is to predict (N +
1) × K entries comprising a zero-padded incidence matrix and an additional row of binary val-
ues that indicates whether the particle corresponding to a given column exists or not (where
K = 30 is an upper bound on the number of particles in the training data). We imple-
ment the recurrent training strategy of 16 refinement blocks truncated by random gradient skips

1d0 and z0 are the distance of closest approach of the track to the beam line in the transverse and longitudinal
directions, respectively.
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Figure 1: The three main components of the HGPflow network: (a) the encoding model (b) recurrent
model for learning the incidence matrix and the indicator, and (c) particle property prediction network.

described in [11], and extend this approach to the case of a fractional rather than binary-
valued incidence matrix. We define the target entry relating node i to particle a as follows:

Figure 2: The truth and predicted fractional
incidence matrix entries connecting track
(Tr) and topocluster (TC) nodes to particles
for an example from the test dataset.

[I]ia =
Eia∑

particles b

Eib
=

Eia

Ei
(1)

where Eia is the amount of energy that particle a con-
tributes to the total energy Ei of node i (simply equal
to 1 for tracks). Predicted rows in the incidence matrix
are normalized using Softmax (i.e. sum over all hyper-
edges for a given node is 1) before being compared to
target via Kullback–Leibler divergence loss. Predicted
columns are rearranged using the Hungarian algorithm
[12] to minimize the loss. An example of target and
predicted incidence matrix entries is shown in fig. 2.

Properties prediction The third component of the
HGPflow network (fig. 1c) predicts particle properties
for each hyperedge. Classification between photons
and neutral hadrons is performed for hyperedges which do not contain a track and are thus identified
as neutral particles. Predicting the incidence matrix (eq. 1) enables a unique advantage: kinematics
of neutral particle can be approximated as weighted sums and averages over the input features of
the topoclusters contained in the hyperedge. Proxy quantities (denotedˆ) for energy and angular
coordinates can be computed as:

Êa =
∑

nodes i

EiIia , {η̂a, ϕ̂a} =
∑

nodes i

{ηi, ϕi}Ĩia (2)

where a dual incidence matrix Ĩ , normalized over node instead of particle indices, can be defined:

Ĩia =
Eia∑

nodes j

Eja
=

Eia

Ea
=

Ei · Iia∑
nodes j

(Ej · Ija)
(3)

Therefore, neutral particle kinematics (pT, η, ϕ) are regressed by predicting an offset to the proxy
values in eq. 2. For charged particles, an offset is likewise predicted for the pT measured from the
associated track. The properties loss is computed by matching predicted and target particles using the
Hungarian algorithm. Particles corresponding to hyperedges where the predicted indicator was below
threshold are matched to dummy targets and weighted by zero in the loss.

3



The training, validation, and test datasets for our results contain 50000, 5000, and 32328 single-jet
events, respectively, following the description in section 2. The model is trained for roughly 4 days on
an 24564MiB GPU (NVIDIA RTX A5000), completing 65 + 15 epochs over which the consecutive
trainings of incidence and particle properties converge. Data and code will be made available at the
following repository: https://github.com/nilotpal09/hg-tspn-pflow
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Figure 3: (a) Number of particles (or topoclusters and tracks in PPFlow case) clustered in the jet.
Distribution of relative residuals between predicted and true (b) jet pT and (c) total energy from
neutral particles per event for both HGPflow and PPflow.

4 Performance of particle reconstruction in jets

After evaluation on the test dataset, target charged particles are paired with predicted charged particles
based on an angular match between the associated track. Neutral target and predicted particles are
paired using the Hungarian algorithm with distance metric

√
(∆pT /ptrueT )2 +∆η2 +∆ϕ2.

pT 1− 10 GeV > 10 GeV

Efficiency [%] 80.0 90.2
Fake rate [%] 16.8 5.0
Accuracy [%] 90.4 (52.5) 94.5 (70.0)

Table 1: Efficiency and fake rate of reconstruct-
ing neutral particles, and classification accuracy
for photons (neutral hadrons).

Particle-level performance Using calorimeter
information enables the HGPflow network to pre-
dict pT for charged particles with a resolution that
is 9.8% better than the track measurement at 15
GeV and 36% better above 40 GeV. Table 1 sum-
marizes the efficiency (Nmatched/Ntrue) and fake
rate (N!matched/Npred) of reconstructing neutral
particles in the jet, and the accuracy of classifying
them as either photons or neutral hadrons.

Jet-level performance To evaluate the HGPflow performance on jet quantities, target and predicted
particles are clustered using the anti-kt algorithm [13] with radius parameter 0.4.Jets are also formed
using the outputs of a baseline parameterized particle-flow algorithm (PPflow) following [1]. A
simple calibration is applied to center the jet pT distributions for HGPflow and PPflow around zero.

The number of jet constituents is shown in fig. 3a for the three collections. The shifted PPflow
distribution reflects the fact that, in contrast to HGPflow, this approach doesn’t predict individual
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neutral particles, but simply the fraction of neutral energy per topocluster. Although HGPflow is not
trained to regress jet properties directly, it outperform the PPflow baseline in reconstructing the jet pT
(fig. 3b) and the total energy from neutral particles per event (fig. 3c). The peak at 1 in fig. 3c for
PPflow results when the parameterized subtraction removes all energy present. An example event
display showing reconstructed particles in a jet is provided in the appendix.

5 Discussion and summary

Inductive bias The jet-level performance of HGPflow can be understood in terms of its prediction
of charged particle pT that improves the track measurement and its ability to both reconstruct neutral
particles and regress their momentum (shown in fig. 3a and 3c, respectively). The latter benefits
from the fact that successfully predicting an incidence matrix defined via eq. 1 and the hyperedge
indicator row entails knowing the energy contributions a given topocluster received from all particles
(fig. 2). Since both the hyperedge representation and the proxy for neutral particle energy (eq. 2)
are weighted by entries of the incidence matrix, the prediction which stem from them inherit a bias
towards energy conservation.

Future work Applying HGPflow to full collision events including pileup will be an important
extension which we expect to be straightforward. Improvements to the algorithm itself are foreseeable:
first, the input graph granularity can be increased to further enable segmentation of overlapping
particle showers. A second improvement could be to train the incidence and properties predictions
simultaneously in a scheme that allows the two objectives to be synergistic, rather than separate.

In summary, we find that the formalism of particle reconstruction as a task of predicting hyperedges
on the input set and their properties not only shows promising performance in the jet environment but
also enables an interpretation of results that directly relates energy deposits to particles.

6 Broader impact

Hypergraphs have been used to model relationships on social networks (with hyperedges connecting
groups of people with e.g. common friendships, publications, or product interest) [14]. We expect
that in such contexts similar cases exist where not only the incidence structure of the hypergraph
but also the attributes associated with its hyperedges are of interest. Moreover, our approach is
particularly relevant to cases where hyperedge attributes are approximated by weighted averages over
node features. However, though a similar approach to ours may help improve predictions in such
cases, we do not foresee this having a negative societal impact.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Table 1 and fig. 3c demonstrate that HGPflow can
reconstruct individual neutral particles inside of jets, and we explain in section 5 why
we believe our approach of predicting hyperedges is key to the performance.

(b) Did you describe the limitations of your work? [Yes] In section 2 we state a simplifica-
tion of our dataset (“emulated solely”), and in 5 we phrase our limitations (e.g. partial
event, no pileup) and untried ideas as opportunities for future work.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Section 6
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [No] But we are
preparing the code to be more user-friendly and will release together with the dataset
on the timescale of NeurIPS.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Section 3

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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A Appendix
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Figure 4: Event display of a single-jet event including angular locations and momenta of truth and
reconstructed (predicted) particles. Each of the six calorimeter layers is shown in the region of interest.
The fill of calorimeter cells shows their energy and the color of their outlines show the topocluster
they belong to. The jet is composed of two photons and four charged particles, all of which are
correctly reconstructed by the HGPflow network in this example, taken from the test dataset. The
particles are presented at the interaction point and the tracks show their extrapolated position to the
corresponding calorimeter layer. The circle of radius 0.4 represent the jet cone.
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