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Abstract

Extracting the maximum amount of cosmological and astrophysical information
from upcoming large-scale surveys remains a challenge. This includes evaluating
the exact likelihood, parameter inference and generating new diverse synthetic
examples of the incoming high-dimensional data sets. In this work, we propose
the use of normalizing flows as a generative model of the neutral hydrogen (HI)
maps from the CAMELS project. Normalizing flows have been very successful at
parameter inference and generating new, realistic examples. Our model utilizes the
spatial structure of the HI maps in order to faithfully follow the statistics of the data,
allowing for high-fidelity sample generation and efficient parameter inference.

1 Introduction

As the fields of cosmology and astrophysics enter the era of big-data, next-generation large-scale
surveys, such as the Square Kilometer Array [SKA, 1], the Hydrogen Epoch of Reionization Ar-
ray [HERA, 2], the Low Frequency Array [LOFAR, 3], the Vera C. Rubin Observatory Legacy Survey
of Space and Time [LSST, 4], Nancy Grace Roman Space Telescope [Roman, 5], Spectro-Photometer
for the History of the Universe, Epoch of Reionization, and Ices Explorer [SPHEREx, 6] and Eu-
clid [7], will enable imaging the neutral hydrogen (HI) in the early universe using unprecedented
sensitivity and large fields of views. These surveys are expected to provide large amounts of high-
dimensional data sets that require new tools, able to efficiently extract as much cosmological and
astrophysical information as possible. A key challenge in the analysis of these new data sets lies in
evaluating the exact likelihood of new samples in order to perform parameter inference that will en-
able translation of these growing observational efforts into tight theoretical constraints. Additionally,
generating labeled synthetic large-scale HI maps, which faithfully capture the high-order statistics of
the data, is equally important in order to facilitate accurate forecasting for upcoming surveys.

Traditional inference methods usually rely on the use of summary statistics, such as the spherically-
averaged power spectrum, and are prone to loss of information due to data compression. However, a
key lesson learnt from recent state-of-the-art convolutional neural networks (CNNs) is that performing
inference at the field level is crucial to extracting the maximum amount of information [8, 9]. While
there exist several families of generative models, such as generative adversarial networks [10] (GANs)
and variational autoencoders [11] (VAEs), they are not able to provide full access to the exact
likelihood of high-dimensional data. On the other hand, normalizing flows [12–16] are emerging as a
powerful technique that provides access to high-dimensional likelihood and can generate high fidelity
new samples.
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Figure 1: (A) normalizing flow modules used in Glow, (B) Glow architecture and (C) module changes
in order to make Glow conditional

Recently, a normalizing flow model called HIFlow [17] that is based on conditional masked au-
toregressive flows was introduced as a generative model for simulated HI maps. While successful,
HIFlow does not utilize the spatial structure of these HI maps and as such is unable to capture the full
statistics of the data. In this work we propose a new model, called HIGlow4, which is a conditional
version of Glow [13], a powerful normalizing flow for modeling images. By using convolutional
operations, our model is more suited to the spatial structure of the HI maps and is able to faithfully
capture their high-frequency statistics. Additionally, using our conditional model we show how
parameter inference is made possible using the posterior distribution of our model.

1.1 Simulation

We use simulations from the CAMELS project, recently introduced in Villaescusa-Navarro et al. [18].
CAMELS is a suite of thousands of simulations run with state-of-the-art cosmological hydrodynamic
galaxy formation models, by varying two cosmological parameters (Ωm and σ8) and four other
parameters that modify the strength of stellar feedback (ASN1, ASN2) and black hole feedback
(AAGN1, AAGN2) relative to the original IllustrisTNG and Simba simulations. We focus our analysis
on the Latin-hypercube (LH) set, which is a set of 1,000 simulations that explores this six-dimensional
parameter space with uniform prior ranges.

Hassan et al. [17] showed that the distribution of the HI maps from the CAMELS simulations is
largely dependent on the cosmological parameters Ωm and σ8. As such, we chose to focus on a
model that is conditional on only these two parameters. Nonetheless, our model can be extended in
order to use more conditional parameters, if needed.

2 Methods

Normalizing flows are a flexible framework for modelling probability distributions. Intuitively,
normalizing flows utilize the change of variable formula in order to define a parametric transformation
of a simple distribution into a more flexible distribution, in order to model the distribution of data.
See [16] for an in-depth discussion of normalizing flows and their applications.

4Code available at github.com/friedmanroy/HI-generation

2

https://github.com/friedmanroy/HI-generation


2.1 Glow

Glow ([13]) is a normalizing flow model that utilizes 1× 1 invertible convolutions in order to define
invertible functions that take spatial information into account. The Glow architecture can be simplified
into 3 modules which are stacked in order to create a single flow step, which are further stacked in
order to get a flow block. These modules are:

Actnorm which scales and translates the different channels in the input.

Invertible 1× 1 convolutions which act as a generalization of a permutation.

Affine coupling which is the workhorse of the Glow architecture and allows for invertible affine
transformations of the input.

The Glow architecture further utilizes the spatial structure of the images by squeezing the spatial
dimension into the channel dimension (see [19]), which allows for more efficient splitting in the affine
coupling layers and the use of a multi-scale approach; Figure 1-A shows a schematic of the layers
mentioned above while Figure 1-B shows a schematic of Glow’s architecture. The implementations
of Glow’s affine coupling layers utilize CNNs, making it particularly useful for modelling images.

2.2 HIGlow

In conditional modelling, we are given a dataset of pairs D = {(zi, xi)}Ni=1 where the zis are the
underlying parameters for the generation of xi. In this case, the task is to model the conditional
distribution px (xi|zi). The Glow model, as described above, does not have the capability to model
the required conditional probabilities.

In order to turn a normalizing flow model into a conditional model, it is enough to change the
transformation into one that takes z, as well as the latent vector y, as an input: x = f−1

θ (y, z). In
practice, this can be accomplished by changing the modules described in section 2.1.

We follow the methods of [14, 15] to turn Glow into a conditional model, using variants of the
actnorm and affine coupling modules. Given the parameters z, these new layer types are:

Affine injector, a variant of the actnorm layer, with the following transformation:

y = gs(z) ◦ x+ gt(z) (1)

where gs(·) and gt(·) are neural networks. This transformation was placed instead of the actnorm in
Glow.

Conditional affine coupling is the same as the original affine coupling, only z is added as an input
to the affine transformation. This transformation was used instead of the standard affine couplings of
Glow.

A schematic of both of the newly defined layers and how they compare to the standard Glow network
can be seen in 1-C.

In order to insert conditional information into the affine coupling layer, as described above, a new
constant channel was added to the affine coupling’s input for every parameter. Additionally, the affine
injector in Equation 1 is defined according to two functions: gs(z) and gt(z). In our implementation,
both of these functions were implemented as multi-layer perceptrons (MLPs) with a single hidden
layer from z to a scalar.

3 Results

For all experiments, we used HIGlow with 6 flow blocks, each containing 20 flow steps on 64× 64
pixel HI maps. Both the conditional affine coupling as well as the affine injectors had 1 hidden layer
of width 16. The model was trained for 1000 epochs on one GPU.

3.1 HI map generation

HIGlow can be used in order to generate new HI maps, conditional on the cosmological parameters
Ωm and σ8. As can be seen in Figure 2-A, samples generated from HIGlow are visually very similar
to those from the CAMELS simulation, even for different parameter settings.
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Figure 2: (A) Samples from CAMELS (top) next to samples generated from HIGlow (bottom)
for different parameter settings. (B) Comparison of marginal power spectrum mean and standard
deviation between CAMELS, HIGlow and HIFlow; (C) comparison of power spectra under different
conditional parameters.
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Figure 3: (A) Posterior distribution of HI maps with different parameters. (B) Estimated parameters
using the mean of the posterior versus the true parameter values.

To ensure that the statistics of the generated HI maps follow the statistics of the CAMELS simulation
data, we compare the power spectra of both methods. Figure 2-B shows the mean power spectrum and
standard deviation from it as a function of spherical frequency of 500 maps unconditionally generated
from HIGlow against 500 maps from CAMELS and 500 maps generated by HIFlow [18], a previous
approach using autoregressive flows in order to model HI maps from CAMELS. HIGlow is able to
correctly model the high-frequency information in the HI maps, unlike HIFlow. In Figure 2-C, the
same curves can be seen for specific parameters values. In these HIGlow is able, again, to generate
images with similar mean spectrum and standard deviation.
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3.2 Posterior distribution and parameter inference

HIGlow can also be used in order to infer the underlying cosmological parameters, given a specific
HI map. Bayes’ law can be approximated in order to find the posterior distribution p(z|x):

p(z|x) = p(z)p(x|z)∫
p(x, z)dz

≈ p(z)p(x|z)∑N
i=1 p(x|z̃i)p(z̃i)

(2)

where z̃1, · · · , z̃N are N samples from p(z).

In CAMELS, the distribution over the cosmological parameters is uniform, so this is the setting
we use in the following experiments, as it also follows for the test data. If a different prior over
cosmological parameters is given, it can also easily be incorporated in this step. Figure 3-A shows
examples of the posterior distributions of HI maps the model didn’t see during training time. The
posterior distribution in these plots is concentrated around the true parameter values and admits a
measure of uncertainty, which may be useful in real experimental settings.

The posterior distribution can also be utilized in order to estimate the cosmological parameters given a
new, unseen, HI map. To do so, we approximate the minimum mean-squared error (MMSE) estimator,
given by ẑ = Ez [z|x], where ẑ is the estimated value. Assuming that HIGlow correctly captures the
conditional distribution, the MMSE is assured to give the most accurate estimate (in expectation).
Results for parameter inference can be seen in Figure 3; as can be seen, the predictions are typically
close to the true values. This estimator achieves an RMSE of 0.058 for Ωm and 0.065 for σ8.

4 Discussion

In this work, we have introduced a new generative model, HIGlow, capable of generating high-fidelity
HI maps and allows for exact likelihood estimation of high-dimensional data points. HIGlow also
allows for the generation of new data points conditional on cosmological parameters, with a similar
power spectrum distribution to that of the CAMELS simulation suite. By utilizing the ability of this
model to calculate the exact likelihood of maps conditional on a set of parameters, the posterior of the
cosmological parameters conditioned on HI maps is made possible. This further allows for accurate
parameter inference, which may prove helpful in upcoming large-scale cosmological surveys.

As HIGlow is an accurate model of the CAMELS simulation, it is our hope that HIGlow can be used
to generate novel samples of HI maps under different cosmological parameters. Future work will
focus on using HIGlow to forecasting for specific experiments such as CHIME [20], HIRAX [21]
and SKA [1]. This will include a full treatment to all instrumental effects, such as angular resolution,
thermal noise and foreground cleaning.

5 Broader Impact

In this work, a new generative model for HI maps in the early universe was introduced, allowing for
faster generation of new HI maps as well as parameter inference. Hopefully, the methods introduced
in this work will facilitate cosmological research. While in general machine learning can be misused,
but we recognize no situation where the methodologies, models or implementations of this work can
lead towards any negative societal impacts.
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Jelić, Hannes Jensen, Ronniy Joseph, Panos Labroupoulos, Avery Meiksin, Andrei Mesinger, André R.
Offringa, V. N. Pandey, Jonathan R. Pritchard, Mario G. Santos, Dominik J. Schwarz, Benoit Semelin,
Harish Vedantham, Sarod Yatawatta, and Saleem Zaroubi. Reionization and the Cosmic Dawn with
the Square Kilometre Array. Experimental Astronomy, 36(1-2):235–318, August 2013. doi: 10.1007/
s10686-013-9334-5.

[2] David R DeBoer, Aaron R Parsons, James E Aguirre, Paul Alexander, Zaki S Ali, Adam P Beardsley,
Gianni Bernardi, Judd D Bowman, Richard F Bradley, Chris L Carilli, et al. Hydrogen epoch of reionization
array (hera). Publications of the Astronomical Society of the Pacific, 129(974):045001, 2017.

[3] Michael P van Haarlem, Michael W Wise, AW Gunst, George Heald, John P McKean, Jason WT Hessels,
A Ger de Bruyn, Ronald Nijboer, John Swinbank, Richard Fallows, et al. Lofar: The low-frequency array.
Astronomy & astrophysics, 556:A2, 2013.
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