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Abstract

We formulate the problem of detecting collective anomalies in collider experiments
as a Goodness of Fit test of a reference hypothesis (the Standard Model) to the
observed data. Several well established Goodness of Fit methods are available
for one-dimensional problems but their multivariate generalization is still object
of study. We exploit machine learning to build a set of multivariate tests, starting
from the outcome of a machine learned binary classifier trained to distinguish the
experimental data from the reference expectations, as prescribed in Ref.s [1, 2, 3, 4].
We compare typical one-dimensional test statistics computed on the output of
the classifier with less common test statistics built out of standard classification
metrics. In the considered setup, the likelihood-ratio test shows a broader model-
independent sensitivity to the landscape of the signal benchmarks analysed. A
novel test we define, based on event counting with an optimised classifier threshold,
is found to perform slightly better than the likelihood-ratio test for resonant signal,
but is exposed to strong failures for non-resonant ones.

1 Introduction

As of today, the Standard Model embodies the best description of the current understanding of
the world of particle physics. Nevertheless, it does not depict the whole landscape of the physics
phenomena governing our Universe; it does not provide an explanation for cosmological observations,
like dark matter and dark energy, and it does not include a quantum description for gravity. The
high energy physics community is therefore searching for hints of phenomena going beyond the
Standard Model, trying to locate where the latter would eventually fail in describing the data. The
typical approach to new physics searches is to perform a hypothesis test of the data, taking the
Standard Model to be the null hypothesis and a specific theoretical extension of the Standard Model
as alternative. This types of test are well understood and routinely applied at collider experiments.
However they can only test a specific failure of the Standard Model at the time and therefore only
partially answer to the problem of the goodness of the Standard Model fit to the data. A higher degree
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of inclusiveness can be reached by relaxing the assumptions on the theory behind the alternative
model, up to the point of directly comparing the Standard Model expected data distribution with
the one experimentally observed. By releasing the dependency on the alternative hypothesis the test
becomes sensitive to any possible failure of the Standard Model at once and it moves to the realm of
goodness of fit (GoF) tests.
GoF tests can be solved either as a one-sample or a two-sample problem. In the first case, a set of
measurements {xi}Ni=1 is compared to a known target probability distribution p(x). In the second
case, the target probability distribution is not analytically known but approximated by the empirical
distribution of a second sample {zi}Mi=1, to be compared to the original one. The GoF problem has
no optimal solution, meaning that the power of a test against different discrepancies depends on
the model and the strategy adopted to perform the fit. Nevertheless, GoF tests are useful tools in
data analysis; recently, for instance, they have been combined with machine learning methods to
tackle model-independent searches of statistical anomalies in high energy physics [1, 2, 4, 3, 5, 6].
Machine learning algorithms can indeed be used to push the boundaries of GoF for multivariate
problems [7, 8, 9, 10]. GoF can be performed training a binary classifier to compress the discriminant
features of a multi-dimensional problem into one dimension (the output of the classifier) over which
the standard univariate GoF tests can be computed [7]. But machine learning can be exploited even
further and new GoF tests can be defined on top of the classifier quality metrics, such as the AUC
and the binary accuracy [4, 9]. More recently [1, 2, 3], it has been proposed to approach the GoF
problem as a likelihood-ratio test, where the set of alternative distributions is obtained by extending
the Reference prediction with flexible parametric or non-parametric models such as neural networks
or kernel methods. This novel approach is a specific incarnation of the classifier-based method,
which in particular foresees employing as test statistic the likelihood ratio as evaluated by the trained
classifier output. In this work we explore various approaches to perform multivariate GoF tests as a
solution for model-independent new physics searches at collider experiments. We start from a binary
classifier trained to maximize the lilkelihood-ratio between the true hypothesis of some experimental
data (class 1) and the expected normal behavior of the data depicted by a reference sample (class 0).
We observe that applying a classifier not only allows to reduce the dimensionality of multivariate
problems to a univariate one but it also allows to construct more sensitive tests. In particular, we will
show that the likelihood-ratio test is sensitive to the broad landscape of signal benchmarks analysed in
this work. Furthermore, we design a novel test, based on event counting with an optimised classifier
threshold, that is found to perform slightly better than the likelihood-ratio test for resonant signal, but
is exposed to strong failures for non-resonant ones.

2 Machine learning Goodness of Fit tests of the Standard Model

For the classifier training procedure we adopt two different prescriptions, based respectively on
neural networks (NN) [1, 2] and kernel methods (KM) [3]. We assume that a set of experimental
data D = {xi}ND

i=1 has been collected and the aim is testing its agreement with a reference (null)
hypothesis. The problem is set up as a log-likelihood-ratio test of the data comparing the null
hypothesis (according to which the data follow the reference distribution) and an alternative, which
is not specified a priori but machine learnt from the data themselves. As it is typically the case in
high energy physics experiments, we assume the total number of collected events to be poissonian
distributed around a number of expected events (N(R) for the reference, N(D) for the alternative)
so that the correct likelihood of the data is the extended likelihood. Moreover, while the alternative
hypothesis is not known and should be retrieved from the limited statistics experimental data, the
reference hypothesis (which in the context of high energy physics experiments is the Standard Model)
is assumed to be well known and accurately reproducible thanks to a large amount of simulated
training events, R = {xi}NR

i=1 with NR ≫ ND.

In what follows we define the set of GoF tests computed on the output of the trained classifier.

LRT: is the extended likelihood ratio test computed according to [1]

tLRT(D) = −2

[
N(R)

NR

∑
x∈R

(ef(x;ŵ) − 1)−
∑
x∈D

f(x; ŵ)

]
.

2



For both the NN and the KM implementations, f(x; ŵ) is the (linear) functional output of the model
with ŵ the model parameters at the end of training.

Pois: is inspired to the figure of merit used in particle physics to quantify the statistical significance1

of an excess on a single bin analysis. The test is computed on the right tail of the classifier output with
sigmoid activation (f̄(x; ŵ)) and maximised over the lower boundary of the bin (thr). It quantifies the
poissonian probability of observing nD(f̄ > thr) data events above the threshold given the expected
number of events under the Reference hypothesis nR(f̄ > thr)

tPois(D) = max
thr∈[0, 1]

[
Ppois(nD(f̄(x; ŵ) > thr); λ = nR(f̄(x; ŵ) > thr))

]
.

ACC: is the accuracy of the classifier maximised over the classification threshold (thr)

tACC(D) = max
thr∈[0, 1]

[
nD(f̄(x; ŵ) > thr) + nR(f̄(x; ŵ) < thr)

ND +N(R)

]
.

AUC ext: is a variation of the Area Under the Curve of the Receiver Operating Characteristic
(ROC), accounting for the normalization of the distributions (by analogy with the extended likelihood).
In the construction of the ROC curve, rates are replaced by the absolute number of true positives and
false positives (normalized to the expected background N(R)). The resulting AUC does not sum to
unity and it is sensitive to the number of events.

KS out: is the conventional Kolmogorov-Smirnov test computed on the classifier output f̄(x; ŵ).

N(S)/
√
N(R): is the significance due to normalization only. N(S) is the difference between the

total number of events in the dataset D and the expectation under the Reference hypothesis N(R).

For the one-dimensional experiment considered in the next section, we additionally compute two
standard one-dimensional GoF tests: the Kolmogorov-Smirnov test and the χ2 test. For the latter, we
assume the reference hypothesis to be analytically known so that the expected number of events in
each bin is error free. We divide the distribution in equally populated bins and in order to study how
the power of the test depends on the choice of binning, we consider ni =5, 10, 100 events per bin.

Following Refs. [1, 2, 3], every time a new set of data D is analysed, the models are retrained from
scratch and every test statistic is computed in-sample. The empirical distribution of each test is
obtained running around 400 experiments for the null hypothesis and 100 for the alternative.
The kernel-based models have been trained sequentially on a single machine with a NVIDIA Quadro
RTX 6000 with 24 GB of VRAM while the neural network models have been trained in parallel on a
CPU cluster. This choice of training resources is dictated by the average time needed to train a single
classifier in the two implementations, which is O(hours) for the NN and O(seconds) for the KM.

The results are reported in terms of power curves: for different confidence levels α we scatter the
fraction of true positives P (Z > Zα) as a function of the score Zα.

3 Results

One-dimensional toy model. As a first example, we consider a univariate problem with a reference
hypothesis characterized by an exponentially falling distribution with unit mean. The experimental
luminosity is such that we expect 2000 background events on average. We consider four signal
benchmarks mimicking qualitatively different new physics effects:

H1: a peak in the tail of the exponential distribution, modelled as a gaussian distribution with
mean 6.4 and standard deviation 0.16.

H2: a quadratically growing excess in the tail (p(x) ∝ x2e−x). For this signal we consider the
case of shape only effect, keeping the normalization the same as in the reference hypothesis,
and the case of both shape and normalization effects.

1We adopt the standard definition Z = Φ−1(1− p), where p is the p-value and Φ−1 is the quantile of the
Gaussian distribution.
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H3: a peak in the bulk of the exponential distribution, modelled as a gaussian distribution with
mean 1.6 and standard deviation 0.16.

H4: a defect in the tail of the distribution obtained simply applying an upper boundary to the
data at x4 = 5.07.

For the NN model we use a 1-4-1 architecture with sigmoid activation function in the hidden layer
and a linear output. We apply a weight clipping of 9 and we run each training on 300k epochs using
ADAM optimizer. The model is implemented in TENSORFLOW [11]. The KM approach is a kernel
logistic regression model with a L2 regularizarion (λ = 10−10), a gaussian kernel (σ = 2.3) and
column subsampling (m = 5000 Nyström centers). The model is built using the Falkon library [12].
More detailed descriptions of model selection and training schemes can be found in Ref.s [3, 13]. As
a reference training sample we generate 200k events (100 times larger than the expected background).

Figure 1 shows the performances of conventional one-dimensional test statistics computed on the
input variable x (top row) and those of test statistics that have been computed on the classifier output
using the NN and KM models (bottom row). The LRT (NN) is reported on every plot as a reference.
We observe that the test statistics based on the LRT and the one based on the right tail cut-and-count
(Pois) outperform on average all the other tests. The performances of the χ2 test highly depends on
the binning choice, while the KS is more powerful in case of non localized shape effects. LRT is
the only test sensitive to H4.

Figure 1: Power curves for different test statistics computed for the four signal benchmarks considered
in the 1D experiments. The gray area represents the type I error.

Di-muon final state at the LHC: A more complex setup inspired by the realistic problem of a
model-independent new physics search is that of a di-muon final state at the LHC. We perform a
multivariate analysis on a set of five variables describing the kinematics of the two-body system:
the transverse momenta of the two muons (pT,1, pT,2), the pseudorapidities (η1, η2) and the relative
azimuthal angle (∆ϕ1,2). The training data are made available on Zenodo [14] by the authors of
Ref. [2], where the reader can find the details of how events are generated. For the sake of this
work we neglect the impact of systematic uncertainties that would affect the knowledge of the SM
predictions but a strategy to include them is available in Ref. [13].

We consider three signal benchmarks: a new vector boson (Z ′) with the same couplings to SM
fermions as the SM Z boson and mass of 200 and 300 GeV; a non-resonant effect due to a dimension-
6 4-fermion contact interaction cW

Λ Ja
LµJ

µ
La, where Jµ

La is the SU(2)L SM current. The energy scale
Λ is fixed at 1 TeV and the Wilson coefficient cW determines the coupling strength.

Two different data selections over the two-body invariant mass have been considered: a 100 GeV
threshold excluding the Z pole and a lower threshold at 60 GeV which allows to include the Z pole in
the dataset making the problem of detecting the signal more challenging. We adjusted the luminosities
in order to keep the training statistics comparable for the two configurations: 0.35 fb−1 for the 60
GeV mass threshols and 3.5 fb−1 for the 100 GeV one. We also changed the signal cross sections in
order to have comparable ideal scores.
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For the NN implementation we consider a model with three layers of 5 neurons each, sigmoid
activations for the hidden layers and a linear output. We train with ADAM optimizer and a weight
clipping set to 2.15. The KM model has an L2 weight of λ = 10−7, a gaussian width of σ = 3 and
m = 5000 Nyström centers. The reference sample size is five times larger than the expected SM
background (see [3] and [13] for more details).

Figure 2 shows the power curves obtained from the various GoF tests computed on the classifier
output for the three different signal benchmarks and the two different mass cut choices. Also in this
case the LRT and Pois tests outperform the other test statistics.

Figure 2: Power curves for different test statistics computed for the three signal benchmarks consid-
ered for the dimuon problem. The gray area represents the type I error.

4 Conclusions

The model-independent likelihood ratio test inspired by Ref. [1] can be interpreted as a GoF test and,
under the training conditions prescribed in [1, 2, 3], is shown to posses an overall broad sensitivity
to the types of signals considered in this work. The Pois test, also introduced in this work, obtains
comparable or better performances for resonant signals but shows poor sensitivity to non-resonant
ones, in particular in the case of a depletion region in the data. A more detailed analysis suggests that
the performance gap between LRT and Pois for certain types of new physics effects resides in the
way the signal component is fitted and isolated from the background. Further investigation will be
needed to enhance the LRT-based algorithms to their maximum potential.
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