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Abstract

We present a deep neural network (DNN)-based model, the HubbardNet, to vari-
ationally solve for the ground state and excited state wavefunctions of the one-
dimensional and two-dimensional Bose-Hubbard model on a square lattice. Using
this model, we obtain the Bose-Hubbard energy spectrum as an analytic function
of the Coulomb parameter, U , and the total number of particles, N , from a single
training, bypassing the need to solve a new hamiltonian for each different input. We
show that the DNN-parametrized solutions have excellent agreement with exact di-
agonalization while outperforming exact diagonalization in terms of computational
scaling, suggesting that our model is promising for efficient, accurate computation
of exact phase diagrams of many-body lattice hamiltonians.

1 Introduction

Many-body lattice models such as Hubbard-like models have produced a wealth of results for
understanding the phase diagrams and excitation spectra of several exotic condensed-matter systems,
including high-temperature superconductors [1, 2, 3], moiré twisted multilayered van der Waals
heterostructures [4, 5, 6, 7, 8], and the superfluidity to insulator transition in bosonic gases [9, 10, 11].
Solving these lattice models remains a challenge due to size of the basis needed to fully represent the
many-body wavefunction: as the system size increases, the number of possible states in which the
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system can exist rises exponentially. Typically, a full solution relies on the exact diagonalization of
the hamiltonian matrix which yields all the eigenvalues and eigenstates of the many-body system.

Main Contributions: We propose a deep learning approach (referred to as theHubbardNet) that
minimizes the expectation value of the Bose-Hubbard hamiltonian with respect to the deep neural
network (DNN)-parametrized solutions. We demonstrate the ef�cacy of the model by obtaining
the ground state and excited states of the one-dimensional (1D) and two-dimensional (2D) square
lattices. Our DNN-parametrized solutions are analytic functions of the HubbardU parameter and the
total number of particlesN , which circumvents the need to perform an optimization for every new
hamiltonian. We also show that our model exhibits better performance than exact diagonalization for
large system size without sacri�cing accuracy.

Related Work: Methods based on machine learning (ML) with variational freedom to minimize
the energy have proven useful for solving the ground state of interacting spin systems [12, 13], as
well as bosonic systems [14, 15, 16] and fermionic systems [17, 18, 19]. In principle, the amount of
encoded information in these ML-based models scales linearly with the number of particles and sites.
However, the training of a DNN is known to be computationally costly and in many cases it can even
far exceed the cost of exact diagonalization. Moreover, only ground states have been solved using
this approach to date.

2 HubbardNet: DNN-parametrized Solution to the Bose-Hubbard model

Bose-Hubbard Model: The Bose-Hubbard hamiltonian is given by
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wheret is the hopping parameter for particles moving between neighboring sites labeled asi and
j , U describes the on-site Coulomb interaction,âi ; ây

j are the creation and destruction operators for

particles on the lattice sites, andn̂ = ây
i âi is the number operator, counting the number of particles at

sitei . The sum onhij i runs over all nearest-neighbor pairs, while the sum oni runs over all lattice
sites. Two other important features of the model are the number of particlesN and the total number
of statesNB (the basis), which are given, respectively, by the expressions
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The hamiltonian matrix can be constructed by listing all possible vectorsn and taking the inner
producthn jHj n 0i for every pair ofn andn 0. Eachn is associated with an integer label obtained using
the Ponomarev ordering [20, 21, 22]. The ground-truth solution can be found by exact diagonalization
of the matrixh	 i jĤj 	 j i with eigenvaluesE j and eigenvectorsj	 j i which are linear superpositions
of the vectorsn with coef�cients j (n ).

Figure 1: Schematic diagram of the data-free neural network to solve the Bose-Hubbard model.

Architecture: We parametrize the wavefunction	 j by a fully connected DNN	 j = g(W ) where
W denotes the network parameters (Fig. 1). The network takes(M + 2) inputs, which are the
number of particlesnj at allM sites,U, andN . Note thatU andN are input parameters such that the
trained network can make ef�cient predictions at different values ofU andN 's at inference, unlike
all existing techniques which require a new solution for each new parameter. We use a hyperbolic
tangent activation function for all hidden layers. The wavefunction is generally complex, and thus we
need two outputs,u1 andu2, for the real and imaginary parts. For the ground state energy, we choose
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the activation function of the output layer to be an exponential, j (n ) = exp( u1 + i u2) because we
observed better convergence. For excited states, we take a linear activation function for the output
layer, j (n ) = u1 + i u2. Note that although the solution to the 1D and 2D square lattices is purely
real, we keepu2 for generality.

Optimization: From the variational principle, the ground state energyEgs can be obtained by
minimizing the expectation value of the hamiltonian,

hĤi =

P
n ;n 0  �

j (n )hn jĤj n 0i  j (n 0)
P

n j j (n )j2
; (3)

with respect to the NN weightsW . Equation 3 represents the loss function, that is, we minimize
the expectation value of the hamiltonian directly by optimizing the weights of the DNN. By using
multiple values ofU andN as inputs, the loss function can be modi�ed to be the energy averaged
overU andN .

An excited state is a local minimum ofhĤi . We can obtain excited states iteratively by minimizing
Eq. 3 for thej th state	 j with the constraint that	 j is orthogonal to	 0; :::; 	 j � 1 because of the
orthonormality of statesh	 i j	 j i = � ij for i; j � N B . The constraint is achieved iteratively through
the Gram-Schmidt orthogonalization process. Assuming thatv0; v2; :::; v j are linearly independent
outputs from the neural network, with the subscript being the excited state index, the orthogonal set
of wavefunctions can be obtained at each epoch as follows:

	 0 = v0; 	 j 6=0 = v j �
j � 1X

k=1

proju k
(vk ); where proju =

hu jv i
hu ju i

u : (4)

Moreover, it is effective to add a penalty term to the loss function,L P = � exp
�
�j �Es � �E0j

�
, to

encourage the average excited state energy,�Es, to be close to the average ground state energy,�E0.

3 Results

Unless otherwise noted, we choose the network width to consist of 4 hidden layers withD = 400
nodes per layer. We use stochastic gradient descent with momentum= 0 :9, and a cosine annealing
scheme for varying the learning rate,lr , starting fromlr = 0 :01, and reset every 1000 epochs. We
train the network until the variance of the loss function during the last 200 steps is less than1 � 10� 7

(Fig. 2(a)). Additionally, for the excited states, we apply an L2 regularization with a coef�cient
of 10� 4 to the network weights in order to discourage energies from being drastically different for
similar values of the parameterU. To overcome the limitation of a small training set, we randomly
perturb the value of the input values ofU during every epoch by an amplitude less than 0.01. The
code is written in PyTorch [23] and is publically available1. we performed our calculations using a
single Nvidia K80 GPU.

Ground State: We �rst solve for the ground state of the Bose-Hubbard model. For example, we train
the network with three different values ofU for a 4 � 3 2D system (M = 12) andN = 3 with an
open boundary condition, resulting inNB = 1365. Figure 2(b) shows thatHubbardNet is capable
of predicting the energy as a functionU exactly. Figure 2(c) shows the average occupation number,
ĥni i , for a given sitei , for U = 5 :5, which is de�ned asĥni i =

P
n ni j i (n )j2: Figure 2(d)-(e)

compares the wavefunction as obtained fromHubbardNetand from the exact diagonalization, both
in-distribution (U = 2 :0) and out-of-distribution (U = 4 :5) agree well with the ground truth. Using as
few as 3 values ofU for training,HubbardNetis capable of obtaining the ground state wavefunctions
and energies of the Bose-Hubbard model for a wide range ofU values accurately, as Figure 2(b)
demonstrates.

Excited States:Figure 3(a) shows the energy spectra for 4 different values ofU from one training at
inference forM = 5 ; N = 3 with an open boundary condition, andHubbardNet �nds the correct
energy for all excited states. The single training allows us to obtain the full spectrum of the Bose-
Hubbard model for an arbitraryU. Figure 3(b) shows the spectrum produced at inference. The
spectrum agrees well with the exact diagonalization, except for a small deviation atU . 2, most
likely because they are out-of-distribution.

1https://drive.google.com/drive/folders/19PKPxQvaqHyVl0YRME7invmczSMDDcIK?usp=sharing
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Figure 2: Solution to the Bose-Hubbard model with an open boundary condition andM = 12; N =
4. (a) Loss function trace offset by the minimum total energy. (b) Ground state energies from
exact diagonalization (blue dashed line) andHubbardNet for the training set (red crosses) and
prediction (blue scattered points). (c) Occupation numberhn i for U = 5 :5 from HubbardNet. (d)-(f)
Wavefunction magnitudej 0(n )j labeled using Ponomarev ordering from the exact diagonalization
(blue lines) andHubbardNet(orange crosses) for (d)U = 2 :0, (e)U = 4 :5.

Figure 3: Energy spectrum forM = 5 ; N = 3 and an open boundary condition. (a) Energy from the
HubbardNet (scattered points) and exact diagonalization (dashed lines) for the training set which
includes 4 values ofU (color coded); the horizontal axis is the state index with0 corresponding
to the ground state. (b) Energy spectrum for different values ofU in the testing set (blue crosses).
Eigenvalues from exact diagonalization are shown in red dashed lines.

Figure 4: Performance comparison between exact diagonalization andHubbardNet using a 1D
chain (forM = N = 3 ; : : : ; 8) and periodic boundary conditions, as a function of the system basis-
sizeNB , see Eq.(2). (a) Percentage error of the ground state energies obtained withHubbardNet
versus exact diagonalization (ground truth). (b) Computation time forHubbardNet(black) and exact
diagonalization (red).
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