
HubbardNet: Efficient Predictions of the
Bose-Hubbard Model Spectrum with Deep Neural

Networks

Ziyan Zhu
Stanford Institute of Materials and Energy Science,

SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
ziyanzhu@stanford.edu

Marios Mattheakis
John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, Massachusetts 02138, USA

mariosmat@gmail.com

Weiwei Pan
John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, Massachusetts 02138, USA

weiweipan@g.harvard.edu

Efthimios Kaxiras
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, Massachusetts 02138, USA

kaxiras@g.harvard.edu

Abstract

We present a deep neural network (DNN)-based model, the HubbardNet, to vari-
ationally solve for the ground state and excited state wavefunctions of the one-
dimensional and two-dimensional Bose-Hubbard model on a square lattice. Using
this model, we obtain the Bose-Hubbard energy spectrum as an analytic function
of the Coulomb parameter, U , and the total number of particles, N , from a single
training, bypassing the need to solve a new hamiltonian for each different input. We
show that the DNN-parametrized solutions have excellent agreement with exact di-
agonalization while outperforming exact diagonalization in terms of computational
scaling, suggesting that our model is promising for efficient, accurate computation
of exact phase diagrams of many-body lattice hamiltonians.

1 Introduction

Many-body lattice models such as Hubbard-like models have produced a wealth of results for
understanding the phase diagrams and excitation spectra of several exotic condensed-matter systems,
including high-temperature superconductors [1, 2, 3], moiré twisted multilayered van der Waals
heterostructures [4, 5, 6, 7, 8], and the superfluidity to insulator transition in bosonic gases [9, 10, 11].
Solving these lattice models remains a challenge due to size of the basis needed to fully represent the
many-body wavefunction: as the system size increases, the number of possible states in which the
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system can exist rises exponentially. Typically, a full solution relies on the exact diagonalization of
the hamiltonian matrix which yields all the eigenvalues and eigenstates of the many-body system.

Main Contributions: We propose a deep learning approach (referred to as the HubbardNet) that
minimizes the expectation value of the Bose-Hubbard hamiltonian with respect to the deep neural
network (DNN)-parametrized solutions. We demonstrate the efficacy of the model by obtaining
the ground state and excited states of the one-dimensional (1D) and two-dimensional (2D) square
lattices. Our DNN-parametrized solutions are analytic functions of the Hubbard U parameter and the
total number of particles N , which circumvents the need to perform an optimization for every new
hamiltonian. We also show that our model exhibits better performance than exact diagonalization for
large system size without sacrificing accuracy.

Related Work: Methods based on machine learning (ML) with variational freedom to minimize
the energy have proven useful for solving the ground state of interacting spin systems [12, 13], as
well as bosonic systems [14, 15, 16] and fermionic systems [17, 18, 19]. In principle, the amount of
encoded information in these ML-based models scales linearly with the number of particles and sites.
However, the training of a DNN is known to be computationally costly and in many cases it can even
far exceed the cost of exact diagonalization. Moreover, only ground states have been solved using
this approach to date.

2 HubbardNet: DNN-parametrized Solution to the Bose-Hubbard model

Bose-Hubbard Model: The Bose-Hubbard hamiltonian is given by

Ĥ = −t
∑
⟨ij⟩

âiâ
†
j +

U

2

∑
i

n̂i(n̂i − 1), (1)

where t is the hopping parameter for particles moving between neighboring sites labeled as i and
j, U describes the on-site Coulomb interaction, âi, â

†
j are the creation and destruction operators for

particles on the lattice sites, and n̂ = â†i âi is the number operator, counting the number of particles at
site i. The sum on ⟨ij⟩ runs over all nearest-neighbor pairs, while the sum on i runs over all lattice
sites. Two other important features of the model are the number of particles N and the total number
of states NB (the basis), which are given, respectively, by the expressions

N =
∑
i

ni, NB =

(
M +N − 1

N − 1

)
. (2)

The hamiltonian matrix can be constructed by listing all possible vectors n and taking the inner
product ⟨n|H|n′⟩ for every pair of n and n′. Each n is associated with an integer label obtained using
the Ponomarev ordering [20, 21, 22]. The ground-truth solution can be found by exact diagonalization
of the matrix ⟨Ψi|Ĥ|Ψj⟩ with eigenvalues Ej and eigenvectors |Ψj⟩ which are linear superpositions
of the vectors n with coefficients ψj(n).

Figure 1: Schematic diagram of the data-free neural network to solve the Bose-Hubbard model.

Architecture: We parametrize the wavefunction Ψj by a fully connected DNN Ψj = g(W ) where
W denotes the network parameters (Fig. 1). The network takes (M + 2) inputs, which are the
number of particles nj at allM sites, U , andN . Note that U andN are input parameters such that the
trained network can make efficient predictions at different values of U and N ’s at inference, unlike
all existing techniques which require a new solution for each new parameter. We use a hyperbolic
tangent activation function for all hidden layers. The wavefunction is generally complex, and thus we
need two outputs, u1 and u2, for the real and imaginary parts. For the ground state energy, we choose
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the activation function of the output layer to be an exponential, ψj(n) = exp(u1 + iu2) because we
observed better convergence. For excited states, we take a linear activation function for the output
layer, ψj(n) = u1 + iu2. Note that although the solution to the 1D and 2D square lattices is purely
real, we keep u2 for generality.

Optimization: From the variational principle, the ground state energy Egs can be obtained by
minimizing the expectation value of the hamiltonian,

⟨Ĥ⟩ =
∑

n,n′ ψ∗
j (n)⟨n|Ĥ|n′⟩ψj(n

′)∑
n |ψj(n)|2

, (3)

with respect to the NN weights W . Equation 3 represents the loss function, that is, we minimize
the expectation value of the hamiltonian directly by optimizing the weights of the DNN. By using
multiple values of U and N as inputs, the loss function can be modified to be the energy averaged
over U and N .

An excited state is a local minimum of ⟨Ĥ⟩. We can obtain excited states iteratively by minimizing
Eq. 3 for the jth state Ψj with the constraint that Ψj is orthogonal to Ψ0, ...,Ψj−1 because of the
orthonormality of states ⟨Ψi|Ψj⟩ = δij for i, j ≤ NB . The constraint is achieved iteratively through
the Gram-Schmidt orthogonalization process. Assuming that v0,v2, ...,vj are linearly independent
outputs from the neural network, with the subscript being the excited state index, the orthogonal set
of wavefunctions can be obtained at each epoch as follows:

Ψ0 = v0, Ψj ̸=0 = vj −
j−1∑
k=1

projuk
(vk), where proju =

⟨u|v⟩
⟨u|u⟩u. (4)

Moreover, it is effective to add a penalty term to the loss function, LP = − exp
[
−|Ēs − Ē0|

]
, to

encourage the average excited state energy, Ēs, to be close to the average ground state energy, Ē0.

3 Results

Unless otherwise noted, we choose the network width to consist of 4 hidden layers with D = 400
nodes per layer. We use stochastic gradient descent with momentum = 0.9, and a cosine annealing
scheme for varying the learning rate, lr, starting from lr = 0.01, and reset every 1000 epochs. We
train the network until the variance of the loss function during the last 200 steps is less than 1× 10−7

(Fig. 2(a)). Additionally, for the excited states, we apply an L2 regularization with a coefficient
of 10−4 to the network weights in order to discourage energies from being drastically different for
similar values of the parameter U . To overcome the limitation of a small training set, we randomly
perturb the value of the input values of U during every epoch by an amplitude less than 0.01. The
code is written in PyTorch [23] and is publically available 1. we performed our calculations using a
single Nvidia K80 GPU.

Ground State: We first solve for the ground state of the Bose-Hubbard model. For example, we train
the network with three different values of U for a 4× 3 2D system (M = 12) and N = 3 with an
open boundary condition, resulting in NB = 1365. Figure 2(b) shows that HubbardNet is capable
of predicting the energy as a function U exactly. Figure 2(c) shows the average occupation number,
⟨n̂i⟩, for a given site i, for U = 5.5, which is defined as ⟨n̂i⟩ =

∑
n ni|ψi(n)|2. Figure 2(d)-(e)

compares the wavefunction as obtained from HubbardNet and from the exact diagonalization, both
in-distribution (U = 2.0) and out-of-distribution (U = 4.5) agree well with the ground truth. Using as
few as 3 values of U for training, HubbardNet is capable of obtaining the ground state wavefunctions
and energies of the Bose-Hubbard model for a wide range of U values accurately, as Figure 2(b)
demonstrates.

Excited States: Figure 3(a) shows the energy spectra for 4 different values of U from one training at
inference for M = 5, N = 3 with an open boundary condition, and HubbardNet finds the correct
energy for all excited states. The single training allows us to obtain the full spectrum of the Bose-
Hubbard model for an arbitrary U . Figure 3(b) shows the spectrum produced at inference. The
spectrum agrees well with the exact diagonalization, except for a small deviation at U ≲ 2, most
likely because they are out-of-distribution.

1https://drive.google.com/drive/folders/19PKPxQvaqHyVl0YRME7invmczSMDDcIK?usp=sharing
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Figure 2: Solution to the Bose-Hubbard model with an open boundary condition and M = 12, N =
4. (a) Loss function trace offset by the minimum total energy. (b) Ground state energies from
exact diagonalization (blue dashed line) and HubbardNet for the training set (red crosses) and
prediction (blue scattered points). (c) Occupation number ⟨n⟩ for U = 5.5 from HubbardNet. (d)-(f)
Wavefunction magnitude |ψ0(n)| labeled using Ponomarev ordering from the exact diagonalization
(blue lines) and HubbardNet (orange crosses) for (d) U = 2.0, (e) U = 4.5.

Figure 3: Energy spectrum for M = 5, N = 3 and an open boundary condition. (a) Energy from the
HubbardNet (scattered points) and exact diagonalization (dashed lines) for the training set which
includes 4 values of U (color coded); the horizontal axis is the state index with 0 corresponding
to the ground state. (b) Energy spectrum for different values of U in the testing set (blue crosses).
Eigenvalues from exact diagonalization are shown in red dashed lines.
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Figure 4: Performance comparison between exact diagonalization and HubbardNet using a 1D
chain (for M = N = 3, . . . , 8) and periodic boundary conditions, as a function of the system basis-
size NB , see Eq. (2). (a) Percentage error of the ground state energies obtained with HubbardNet
versus exact diagonalization (ground truth). (b) Computation time for HubbardNet (black) and exact
diagonalization (red).
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Performance Evaluation: We compare the performance of HubbardNet with exact diagonaliza-
tionin in Figure 4, on a 2.7 GHz Quad-Core Intel Core i7. We take the network width D = 200. We
use lr = 0.01 and converge the loss function to 1× 10−6. Figure 4(a) shows that the percentage error
of the ground state energies between exact diagonalization and HubbardNet is less than 0.05 % for
all system sizes, showing that HubbardNet is capable of predicting the energy accurately. Figure 4(b)
shows that HubbardNet has a better computation time scaling than exact diagonalization. While
exact diagnolization is faster for a smaller system, HubbardNet outperforms exact diagonalization,
in terms of computational speed, when NB ≥ 6435 or M ≥ 8. We note, however, that while the
error remains small, the error grows as the system size increases. We also expect the errors to grow
faster for excited states due to the error accumulation of the projection (Fig. 3).

4 Conclusions

In this work, we present a DNN-parametrized solution to the ground state and excited states of
the Bose-Hubbard model. We not only successfully find the exact solution but also show a better
scaling than exact diagonalization for a single state. The DNN solution is an analytic function
of the Coulomb parameter, U , allowing for the efficient calculation of the full spectrum from a
single training. While we only present the solution as a function of U in this manuscript, we have
successfully used HubbardNet to obtain energy and wavefunctions as a function of both N and U
Therefore, HubbardNet is an excellent candidate for mapping the exact phase boundary as a function
of the Coulomb interaction strength and the filling factor, especially for a large system size.

Broader Impact

Many-body lattice models like the Hubbard model are of intense theoretical and experimental interest
in condensed matter physics. They are commonly employed to study exotic correlated states and
phase transitions. The neural network-based approach to solve the Hubbard model that we propose
here has several advantages: not only it outperforms exact diagonalization for a large system but also
provides an exact analytic dependence of the solution on the Coulomb interaction parameter U and
the system size N , potentially allowing for the accurate prediction of the exact phase diagram with a
single training. To further improve the computational efficiency, a Monte Carlo sampler can be used
to stochastically evaluate the expectation value in Eq. 1 [24]. In the long term, HubbardNet can be
used to obtain solutions to more realistic hamiltonians including fermionic systems, hamiltonians
with long-range Coulomb interactions, and systems in the presence of an external potential and a
nonzero chemical potential. The improved efficiency and the exact nature of the DNN solution could
be of great benefit to the condensed matter physics community and related fields: by reducing the
computational resources needed to obtain the phase diagram of many-body systems, it enhances our
ability to understand exotic phases of matter.
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