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Abstract

Physic-informed machine learning aims to build surrogate models for real-world
physical systems governed by partial differentiable equations (PDEs). One of the
more popular recently proposed approaches is the Fourier Neural Operator (FNO),
which learns Green’s function operator for PDEs based only on observational data.
These operators are able to model PDEs for a variety of initial conditions and
show the ability of multi-scale prediction. However, as we will show, this model
class is not able to generalize to changes in the parameters of the PDEs, such as
the viscosity coefficient or forcing term. We propose HYPERFNO, an approach
combining FNOs with hypernetworks so as to improve the models’ extrapolation
behavior to a wider range of PDE parameters using a single model. HyperFNO
learns to generate the parameters of functions operating in both the original and the
frequency domain. The proposed architecture is evaluated using various simulation
problems.

1 Introduction

Physical systems governed by differential equations are pervasive in the sciences and engineering.
Indeed, partial differential equations (PDEs) are the most popular modeling method in numerous
disciplines such as the material and climate sciences. On the other hand, the recent success of
data-driven modeling with machine learning (ML) has started a trend to use ML methods, which are
both differentiable and efficient at prediction time, for approximating simulations of physical systems
and solving inverse problems. For instance, neural networks are now commonly used to approximate
the solution of a partial differential equation or its Green’s function (Avrutskiy, 2020; Karniadakis
et al., 2021; Li et al., 2021; Raissi et al., 2019; Chen et al., 2018; Raissi, 2018; Raissi et al., 2018;
Pfaff et al., 2020; Wang et al., 2020; Khoo et al., 2021).

Neural Operators (NOs) Li et al. (2020) and in particular, Fourier Neural Operators (FNOs) (Guibas
et al., 2022; Li et al., 2021) have shown impressive results as surrogate models and have been
applied in challenging scenarios such as weather forecasting (Pathak et al., 2022). Neural operators,
however, work under the assumption that the governing PDE is fixed, that is, its parameters are
static while the initial condition is what changes. If this assumption is not met, the accuracy of
these approaches deteriorates (Mischaikow & Mrozek, 1995), also visible in Figure 3. Thus, when
we are in a situation where we want to generalize to multiple physical model parametrizations, we
would need to either (1) re-train the NO for each of the parameter configurations or (2) include
the parameter values as input to the neural operator (Arthurs & King, 2021). Training over a large
number of possible parametrizations is computationally demanding. On the other hand, increasing
the number of parameters of the network increases the inference time which limits the efficiency
advantage surrogate models have over numerical solvers.
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Figure 1: A HYPERFNO that implements Mλ
θ consists of a base neural operator and a hypernetwork

that learns to generate parameters of subnetworks of the base model. HYPERFNO generates, for each
layer of the base network, and depending on the configuration, the frequency and/or spatial weight
matrices.

With this work, we formulate a meta-learning problem where each task corresponds to a parameter
value of a given PDE. At inference time, we use the learned meta-model to adapt to the current task,
that is, the given parameters of the PDE. To this end, we propose HYPERFNO (section 2), a method to
adapt the Neural Operator over a wide range of parameter configurations, which uses Hypernetworks
(Ha et al., 2016). We also propose variations of the HYPERFNO framework (section 2) with
low memory requirements; while we show experimentally (section 3) why modeling the change
in parameters of a PDE in the frequency domain is beneficial; Finally, since the HYPERFNO is
differentiable with respect to the PDE parameters, we show how to solve inverse problems through
stochastic gradient descent using HYPERFNO in section 2.

2 HYPERFNO: The Hyper Fourier Neural Operator

Problem definition A solution to a PDE is vector-valued function u : T × X × Λ → R on
some temporal domain T , spatial domain X , and parameterized over Λ. For example in the heat
diffusion equation, u could represent the temperature at a location x ∈ X at a time t ∈ T , where
the conductivity field is defined by λ : X → R+. The forward operator maps the solution at one
instant of time to a future time step F : u(t,x,λ) → u(t+ 1,x,λ), which is used to compute the
solution of the PDE at any time, given the initial conditions. We consider the general problem of
learning a class of operators, which includes the forward operator F . Mλ : A×Λ → U between two
infinite dimensional spaces of functions A : Rd → Rp and U : Rd → Rq , on the space of parameters
Λ, from a finite collection of observed data {λj , aj , uj}Ni=1, λj ∈ Λ, aj ∈ A, uj ∈ U , composed of
parameter-input-output triples, where aj ∼ µ and λj ∼ ρ are drawn from two known probability
distributions µ over A and ρ over Λ; using a family of operators Mλ

θ : A×Λ×Θ → U parameterized
by θ ∈ Θ. We then aim to minimize the expected loss minθ Ea∼µ,λ∼ρ L(Mλ

θ (a),M
λ(a)), with

L(u′, u) measuring the difference between the true and predicted output.

Fourier Neural Operators Fourier Neural Operators (FNO) (Guibas et al., 2022; Li et al., 2021) are
among the most successful Neural Operators since they model spatial and frequency domains. FNO
implements a discrete version of Mθ : A×Θ → U , and is composed of initial and final projection
networks parameterized by P ,Q, andQ′, and of a sequence of Fourier layers, parameterized by a
tensorW and is implemented using a 1-d convolutional network for the spatial component, while
parameterized by a tensorR for the frequency component. The FNO can be expressed as

zl+1 = σ(W lzl + F−1(Rl F (zl))), z0 = Px, u = Q′σ(QzL−1), (1)

with zl the latent tensor at l-layer of proper dimension depending on the domain of the PDE, while
x,u are the input and output of the operator. The output projection is implemented using two
consecutive fully connected (FC) layers, the input projection with one FC, and F is Fast Fourier
Transform (FFT).
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HYPERFNO: Hyper Networks for FNO Hypernetworks Ha et al. (2016) have been proposed as
a meta-learning method composed of two networks: the main network (f(ψ,x)), with parameters
ψ, and the hypernetwork2 (h(θ,λ)),with parameters θ. The HYPERFNO network consists of a
hypernetwork that generates a subset of the parameters of the FNO network. If we write a FNO as
the function f(ψ,x), then the HYPERFNO can be written as ψλ = h(θ,λ), û = f(ψλ,x), where
û is the predicted solution given the PDE of parameters λ and initial condition x, and ψ are the
parameters of the FNO network generated by the hypernetwork. We train the hypernetwork end-
to-end by minimizing the following expectation of a loss function minθ Eλ∼p(λ) Ltr

λ(θ,λ), where
Lλ(θ,λ) = E(x,u)∼Dtr

λ
||u− f(ψλ,x)||2, and ψλ = h(θ,λ). p(λ) is some given distribution over

the PDE’s parameters λ, while Dtr
λ is the training dataset, conditioned by the PDE’s parameter. Fig.1

shows an implementation of the HYPERFNO.

HYPERFNO hypernetwork architecture Hypernetworks are used to generate the parameters of a
main neural network conditioned on the current task. Typically, the hypernetwork is a large neural
network that generates the parameters of a smaller network. This approach increases the efficiency
of the model at inference time. An alternative approach aims at using a hypernetwork that only
marginally increases the size of the main network but still allows it to easily adapt to new tasks. We
focus on the second approach and propose a special class of layers of the hypernetwork that can be
used to assemble the main network. In the HYPERFNO, each layer of the FNO and its initial and
final projection operators (Equation 1)are generated by the corresponding hypernetworks

W l = hw(θ
l
w,λ), R

l = hr(θ
l
r,λ), P = hp(θp,λ), Q

′ = hq′(θq′ ,λ), Q = hq(θq,λ) (2)

In the following sections, we considered different implementations of the hypernetworks h∗(θ,λ) of
Equation 2.

Addition and Taylor Model While we could use a generic multi-layer perceptron (MLP), we
present more memory-efficient architectures. From Equation 1, we scale the row and columns of the
W l tensor or only the rows of theRl matrix. The intuition is to allow to learn a fixed direction term
Rl

1 and then be able to scale independently in each dimension based on the parameter λk. We call
this version the Addition version.

hr(θ
l
r,λ) = R

l
0 + (V l

0 diag(λ)V lT
1 )⊙row,col R

l
1, hw(θ

l
w,λ) =W

l
0 + (U l

0λ)⊙row W
l
1, (3)

where ⊙row and ⊙row,col represent the Hadamard product only along the specified dimensions (i.e.
along the rows and along both rows and columns). We can modify the previous model to reduce the
number of parameters

hr(θ
l
r,λ) = R

l
0 ⊙ (I + V l

0 diag(λ)V lT
1 ), hw(θ

l
w,λ) =W

l
0 ⊙ (I +U l

0λ), (4)

where ⊙ refers to the Hadamard operator along the relevant dimensions. We call this version Taylor.
The parameters λ can be encoded using additional neural networks of minimal size, λ′ = g(θg,λ),
with θg additional HYPERFNO parameters.

Inverse Problem over PDE parameters Since HYPERFNO is able to adapt to the change in
the parameters λ of the PDE, HYPERFNO is used for the inverse problem, where, after training
HYPERFNO network over multiple PDE’s parameters, we can recover the parameters of new samples
by solving λ∗ = minλ E(x,u)∼Dfs ||u − f(ψλ,x)||2, ψλ = h(θ,λ), where λ∗ is the optimal
parameter given the trained hypernetwork h(θ,λ) and the new dataset Dfs. The previous problem
can be solved using stochastic gradient descent λt+1 = λt − µ∇λ E(x,u)∼Dfs ||u− f(ψλ,x)||2

3 Experiments

In order to evaluate the performance of HYPERFNO, we considered the following problems (Li
et al., 2021; Takamoto et al., 2022): 1) one-dimensional Burgers’ equation, 2) one-dimensional
reaction-diffusion equation, 3) two-dimensional Decaying Flow problem and 4) two-dimensional
Compressible Fluid Dynamic (Compressible Navier Stokes - CNS). Contrary to (Li et al., 2021), we
prepare datasets allowing various parameter values for instance for the diffusion coefficient.

2Hypernetwork term refers to the combination of the two networks or only to the generative network, the
meaning is given by the context.
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Figure 2: MSE at test time for U-Net, FNO, and HYPERFNO models; tested on (left to right) Burgers,
2D Darcy Flow, Reaction-Diffusion, and 2d+time CNS datasets; we use log scale for visualization.
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(a) FNO
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(b) FNO
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(c) HYPERFNO
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(d) HYPERFNO

Figure 3: Visual comparison of FNO and HYPERFNO for different initial conditions and PDE
parameters, test on the left (a,c), while training on the right (b,d). The x-axis is the spatial domain,
while the y-axis is the solution, either predicted û(t = 1, x)or true u(t = 1, x), while we also report
the initial condition u0(x) in a different color.

Zero-Shot learning In Zero-Shot learning, at training time, we have access to solutions of a PDE
over different initial conditions and for a set of PDE parameters. At inference time, we use the PDE
parameters of the new environment as input to the HYPERFNO to generate the parameters of the
main FNO network. We then use this network to predict the solutions for new initial conditions.
To evaluate the performance of HYPERFNO, we compared it in various numerical computational
problems against the original FNO (Li et al., 2020) and the U-Net (Ronneberger et al., 2015).

Results Figure 2 shows the MSE error at test time for the Burgers, 2-d Darcy Flow, Reaction-
Diffusion, and 2d+time compressible Navier-Stokes simulations. We trained over 10 tasks and 100
epochs, where we split the data between training and testing 60%/40% over 1′000 samples (500 for
CNS). We use a 128 dimensional grid for 1-d equations, while 64 × 64 for the 2-d problems. We
use GeForce RTX 2080 GPU for 1D simulation, while GeForce GTX 3090 for 2D Navier Stocks
simulations. In visualizing the results, we use a log-scale plot when the scale is too large. The CNS
equation is trained auto-regressively, while the others are trained to predict a specific time step. In
all cases, FNO has better performance with respect to U-Net, while HYPERFNO presents greater
flexibility to adapt to the new environment. Figure 3 shows qualitatively that FNO is not able to
predict the solution of the Burgers equation even if the task was seen during training.

4 Conclusion

We propose HYPERFNO, a method to adapt the FNO architecture over a wide range of parameters
of the PDE. We show the improvement gained over different physics systems, such as the Burgers
equation, the reaction-diffusion, the Darcy flow, and the compressible fluid dynamic. Meta-learning
for Physics Informed Machine Learning is an important direction of research and we proposed a
method in this direction that allows us to adapt NOs to new environments. The current method is
limited to PDE of the hydro dynamic family. In its mathematical form, the proposed method has
direct foreseen no negative societal impact.
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