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Abstract

Physics-informed neural networks (PINNs) are attracting significant attention
for solving partial differential equation (PDE) based inverse problems, including
electrical impedance tomography (EIT). EIT is non-linear and especially its inverse
problem is highly ill-posed. Therefore, successful training of PINN is extremely
sensitive to interplay between different loss terms and hyper-parameters, including
the learning rate. In this work, we propose a Bayesian approach through data-driven
energy-based model (EBM) as a prior, to improve the overall accuracy and quality
of tomographic reconstruction. In particular, the EBM is trained over the possible
solutions of the PDEs with different boundary conditions. By imparting such prior
onto physics-based training, PINN convergence is expedited by more than ten times
faster to the PDE’s solution. Evaluation outcome shows that our proposed method
is more robust for solving the EIT problem.

1 Introduction

Physics-informed neural networks (PINNs) [8] parameterize the solutions of partial differential
equations (PDE) by training neural networks to minimize a residual PDE and associated boundary
conditions (BCs), in order to predict scalar valued solutions for any given point inside the problem’s
domain. In this work, we augment unsupervised PINNs with a joint representation using a Bayesian
approach. We train a data-driven prior over joint solutions of PDEs on the entire domain and boundary
points. This prior relates the predictions of PINNs via explicit joint representation and encourages
learning a coherent and valid solution. More importantly, we focus on the non-linear and ill-posed
electrical impedance tomography (EIT) inverse problem and experimentally show that using our
data-driven Bayesian approach results in accurate, fast, and more robust training algorithms.
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The EIT inverse problem is inspired by applications in paradigms such as tomographic imaging and
geophysical ground water flow imaging. The goal is to reconstruct unknown electrical conductivities
σ of any body Ω ⊂ Rd with d ∈ {2, 3} from measurements of finite electrical potential differences
of neighboring surface electrodes. An elliptical PDE and its BCs govern the distribution of either
electric potential u in its forward or σ in its inverse problem respectively. These are shown as follows:

−∇ · (σ∇u) = 0 on Ω (1)

σ

(
∂u

∂n

)
= g on ∂Ω (Neumann BC), (2)

u = f on ∂Ω (Dirichlet BC) (3)

An EIT experiment involves applying an electrical current g on the surface ∂Ω of the region Ω to be
imaged, which then produces a current density given in Eq. 2. Here, n is a unit normal vector w.r.t u
associated with Ω at its boundary. This current also induces u inside the body, whose surface value f
given in Eq. 3 can be measured. Thus by repeating such experiments, we obtain the Neumann-to-
Dirichlet (NtD) operator which finally aids in imaging. In this work, we solve a simplified version
of EIT known as the semi-inverse problem, where we recover σ given the measurements of u in
the interior of the medium. It should be noted that a similar formulation was studied in [1]. In our
training paradigm, we simulate u in interior of the medium for any underlying σ and solve for the
forward problem by training a PINN named u-Net, that can predict the value of the function u(x) at
any given point x ∈ Ω. One can skip this step and directly use the ground truth u-data however, we
use predictions from u-Net to simulate noisier forward solution for more robustness during inverse
map construction. Thus, once we have access to pre-trained u-Net, we will subsequently train another
PINN namely σ-Net, to finally recover σ(x) for any x ∈ Ω from point-wise measurements of a
function u(x) that satisfies Eq. 1, 2 and, 3. In order to train σ-Net, we first define a functional form
of Eqs. 1 and 2 as follows:

Ld
PDE = ∇ ·

(
σd ∇ud

)
∀d ∈ Ω (4)

Lb
BC =

[
σb
∂ub
∂nb

]
∀b ∈ ∂Ωb, Le

BC =
[
σe
∂ue
∂ne

− ge
]

∀e ∈ ∂Ωe. (5)

Note that, we use Neumann BC from Eq. 2 twice, once on all boundary points dΩb except electrodes
and separately on electrodes dΩe. We can then write our combined objective function as follows:

Lθ =
α

Ω

∑
d∈{Ω}

(Ld
PDE)

2 +
β

M

∑
m∈topM LPDE

|LPDE|+
γ

|∂Ωb|
∑

b∈∂Ωb

|Lb
BC|+

δ

|∂Ωe|
∑

e∈∂Ωe

Le
BC +R(x), (6)

where α, β, and γ and δ control the contribution of each term to the overall loss. Additionally, we
enforce strong regularization in R(x) to encourage valid σ predictions (see Appendix Eq. 8 for full
equation).

2 Energy Based Priors

As our main contribution, we propose a data-driven energy-based model (EBM) [7] as a prior to
improve PINN training. Our energy-based prior is defined over the conductivity distribution σ as:
(p(σ) ∝ exp(−Eϕ(σ)). Although several techniques have been proposed in literature for training
EBMs including contrastive divergence [2], noise-contrastive estimation [4], score matching [6],
and denoising score matching [13], we found denoising score matching (DSM) to be more stable,
less compute intensive and ultimately generate more realistic σ solutions in our setting. DSM trains
the energy function such that its vector field (∇σm

log pϕ(σm)) matches the vector field of the
underlying σ distribution p(σm), which is approximated by perturbing the empirical data distribution
with Gaussian noise of different intensities. See [11], [12] for more detail. We jointly estimate a
noise conditional energy function Eϕ(σ, µ) for all noise-perturbed data distributions conditioned
on various noise scales µ ∈ [1 . . . L], satisfying µ1 > µ2 > · · · > µL. In our work, we chose
L = 20 linearly spaced noise scales between µi ∈ [2, 0.01]. Essentially, the training is to minimize
the following objective:

L(ϕ;µi) =
1

L

L∑
i=1

λ(µi)

[
1

2
Ep(σ) Ez∼N (0,I)

∥∥∥∥∇σEϕ(σ̂, µi)−
z

µi

∥∥∥∥2
2

]
, (7)
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where λ(µi) > 0 is a coefficient function chosen as λ(µ) = µ2 and finally, σ̂ = σ + µiz is the
noise perturbed version of conductivity distribution σ̂ ∼ N (σ, µ2

i I). In order to use Eϕ as a prior,
in contrast to the standard DSM training that trains a score network (S(.) = −∇zE), we directly
train the energy network. See Appendix A.3 for training details of Eϕ, some generated σ and closest
training data point shown in Fig. 4.

Upon successful training of the Eϕ using Eq. 7, the energy function E∗
ϕ(σ, µ) will assign lower

energy values to predicted σ that provide valid solutions and vice-versa for unlikely assignments
that violates Eq. 1 greatly. Moreover, Lθ from Eq. 6 can be interpreted as a residual of violation in
Eq. 1, noted as r for simplicity. Assume r (residual of entire domain) follow a multi-variate Gaussian
distribution with a zero mean and diagonal covariance matrix. Therefore, maximizing the likelihood
of p(r|σ; θσ) results in the similar optimization as minimizing

∑
d∈Ω(Ld

PDE)
2 with respect to θσ

(parameters of σ-Net). Now, we can define our Bayesian approach but assuming σ follows the prior
distribution p(σ): maxθσ log p(r|σ) + log p(σ), where σ is parameterized by θσ via σ-Net. We
interpret p(σ) as possible solutions to the PDE defined by Eq. 1 for different boundary conditions.
Now we can rewrite the final σ-Net training objective as: LS = 1

K

∑K
k=1 Lθk +R(x)− κE∗

ϕ(σ, µ),
where κ is the weight of the prior in the overall loss. The main advantage of the our framework is
the generalizability of E∗

ϕ(σ, µ) term. Given that a large-scale training sample generation scheme is
available to train the data-driven EB prior, one can easily train any suitable EBM model and can plug
it into any solvable PDE and obtain highly accurate solutions.

3 Experiments

Our EIT data simulation setup primarily consists of phantom generation and forward solution
construction via finite element solver. We initially construct various discretized solutions of σ with
randomly chosen anomaly configuration and shape on a 2D mesh-grid of size 128× 128 to obtain
phantoms Ω1...Z . The target σ values are chosen randomly between ∈ [3, 15] for either 1, 2 or 3
anomalies per mesh. We additionally smooth our solutions following [3] using a Gaussian low-pass
filter of size 200 and standard deviation 3. We then generate 6512 such smoothed phantoms for EB
prior training and 1628 for testing which are standardized to [0, 1] interval by dividing all samples
using the maximum conductivity σ value obtained from training set. We additionally generate a
few hand-crafted phantoms to train the u-Net and σ-Net for forward and inverse problems. These
phantom configurations are specifically designed to be more challenging by setting higher shape
deformity, larger variance in σ values for each anomaly and placing them in challenging locations
inside mesh ro ensure robustness of our framework. Note that there are no phantoms in the EBM
training set which resemble these hand-crafted samples.

3.1 Expedited Semi-Inverse Problem Evaluation

We now present the main results of our proposed framework. As discussed in prior sections, at each
step of σ-Net training procedure, the current prediction σ̂ is fed to the trained EB prior E∗

ϕ(σ, µL) to
obtain a scalar energy value. This energy value provides useful supervision to σ-Net and essentially
expedites the convergence of PINNs. This phenomenon can be viewed in Fig. 1. Here, each sub-figure
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Figure 1: PDE solution convergence and accuracy analysis via σ MSE for various phantoms.

represents the learning curve of σ-Net trained to recover conductivity of phantoms 1, 2 with and
without the inclusion of EB prior. We use mean squared error (MSE) as the choice of evaluation
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metric. Evidently, the PINNs with EB prior converge much faster within the first few 100 epochs
than the training without prior. In case of phantom 2, the convergence is more than ten times faster
while also aiding the PINN to avoid getting stuck in a local minima. (See Appendix Fig. 3 showing
the quality of reconstruction for other phantoms.)

3.2 Sensitivity analysis via random parameter search

We present a sensitivity analysis study for various parameters in Eq. 6. Since PINNs are extremely
sensitive to the balance of interplay among different hyperparameters [14], the training procedure
essentially becomes an optimization problem where one has to tune the right settings in order
to converge to a highly accurate solution or fall into a failed trivial solution. The problem of
choosing parameters is even more challenging in EIT as it is highly non-linear and ill-posed. We
thus study the effect of changing the strength of various loss weighting penalties. More precisely,
we restrict the search space to α, β, γ and δ which are main terms involving the PDE and its
BC, while solving the semi-inverse problem. We then configure a limited valid set of weights for
α ∈ [0.01, 0.05, 0.1, 0.5, 1], β ∈ [0.01, 0.05, 0.1, 0.5, 1], γ ∈ [0.01, 0.1, 0.5, 1.0, 2.0] and finally
δ ∈ [0.001, 0.01, 0.1, 0.5, 1.0, 2.0] and randomly choose a single weight from each set to perform
training. We conduct 200 of such random search runs on phantom 1, with and without the EB prior.
The results of this study can be seen in Fig. 2.
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Figure 2: Sensitivity analysis of σ-Net while randomly searching the optimal weights in Eq. 6.

Here, Fig. 2a indicates the number of random experimental runs that were successful to reach a set
upper bound of 0.5 MSE after training for 3000 epochs. We infer that the PINN training success rate
with the EB prior is much higher. Additionally, a large number of experiments reach a MSE of 0.1
or lower in comparison to experiments without prior, translating to high accuracy rates when using
EBM. In Fig. 2b, we set a strict MSE threshold of 0.2 and check for number of experiments that
reach this threshold by the end of all 3000 training epochs. Clearly, we can see strong evidence that
PINNs with EB prior has much higher success rate in producing highly accurate σ reconstructions.

3.3 Comparison with baselines

We now compare the performance of our framework with some baselines; Bar&Sochen [1], Deep
Galerkin Methods (DGM) [10] by using phantoms from Fig. 1. We train the baselines and our

Table 1: Evaluation of PINNs augmented with EB priors across various metrics and frameworks
Phantom Metric DGM DGM

With EB prior Bar&Sochen Bar&Sochen
With EB prior Our method Our method

With Prior

Ω1

MSE↓ 3.26 ± 0.028 0.13 ± 0.002 2.57 ± 0.041 0.16 ± 0.026 0.13 ± 0.001 0.03 ± 0.001
PSNR↑ 8.84 ± 0.038 22.77 ± 0.079 9.89 ± 0.068 22.02 ± 0.645 22.79 ± 0.034 29.94 ± 0.146
MDE↓ 2.29 ± 0.024 0.36 ± 0.003 1.84 ± 0.028 0.23 ± 0.002 0.35 ± 0.002 0.12 ± 0.014

Ω2

MSE↓ 2.00 ± 0.013 0.08 ± 0.002 1.64 ± 0.019 0.2 ± 0.036 0.07 ± 0.001 0.01 ± 0.0001
PSNR↑ 15.04 ± 0.028 29.07 ± 0.099 15.92 ± 0.052 25.23 ± 0.779 29.68 ± 0.034 38.45 ± 0.052
MDE↓ 1.47 ± 0.013 0.26 ± 0.004 1.1 ± 0.02 0.19 ± 0.001 0.25 ± 0.003 0.12 ± 0.011

model while using the same hyperparameters (see Appendix Table 3), with and without the EB prior.
We report scores on MSE, peak signal-to-noise ratio (PSNR) and mean difference error (MDE is
error in means of σ over all (x, y) ∈ Ω and dΩ) to evaluate the quality of predicted σ solution. All
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experiments are repeated 10 times and the averaged metrics along with standard deviation errors on
each metric are presented. The main observation from Table 1 is that, we can greatly improve accuracy
of PINNs by incorporating EB priors. Lastly, we can easily plug the prior into any PINN-based
framework to greatly improve their performances, showcasing our framework’s generalizability.

4 Conclusion

Physics-informed neural networks are an important category of data-driven PDE solvers. However,
for more complicated problems PINNs are not stable and robust. In this work, we look at the EIT
problem and show that we can improve the stability and robustness of PINNs training via a Bayesian
approach. We describe a data-driven prior using energy-based methods, which can easily be used
with the other loss term to robustly train PINNs. In the EIT setting, our experimental result also show
that PINNs converge faster and also to a more accurate solution when trained with prior.

Impact Statement

Physics-informed neural networks (PINNs) have many applications in scientific problems including
the medical imaging. Our Bayesian framework expedites training of PINNs and makes them more
robust and stable, which in-turn can facilitate the training of PINNs for a broader use. However,
we use a data-driven prior which may not easily obtainable for every application. In our work, we
discuss training the prior for electrical impedance tomography, which itself is an important problem
in medical tomographic imaging.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [N/A]

• Did you include the license to the code and datasets? [N/A]

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] We did
not share code but plan to in the future. All our experiments are reproducible, see
Appendix.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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A Appendix

The model architectures and training implementation details for u-Net, σ-Net and EBM are shared
here.

A.1 Semi-Inverse Implementation Details

We present some additional phantoms in Fig. 3 that were used to train the σ-Net PINN and their
corresponding predicted solutions in row 2.
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Figure 3: Comparison of ground truth σ and predictions from PINN with EB prior.

As for implementation and reproducible details, we train σ-Net such that it learns the conductivity
distribution over all given mesh points to solve the semi-inverse problem. σ-Net incorporates the
main PDE and the Nuemann BCs seen in Eq. 6 as a part of its training objective in order learn
the conductivity inside Ω. However, the problem is known to be illposed and thus needs strong
regularizers to improve the quality of reconstructions in conjunction with Lθ. For instance, we
regulate the norm of gradients ∇x,yσ inside Ω to promote sparse edges in predictions, and we
penalize any conductivity prediction of less the one (= conductivity of vacuum) using Lh

hinge =

max(0, 1− σh) ∀h ∈ {Ω ∪ ∂Ω}. The combined σ-Net training objective assimilating the elliptical
PDE, its BC, and all the aforementioned mentioned regularizers is given as follows:

Lθσ-Net = Lθ+
1

|∂Ω|
∑

b∈∂Ωb

|σb−σ∗
∂Ωb

|+ τ

|Ω|
∑
d∈Ω

|∇x,yσd|+
υ

|Ω ∪ ∂Ω|
∑

h∈{Ω∪∂Ω}

Lh
hinge +ζ ∥wσ∥2 ,

(8)

The common loss weighting penalties used by both the u-Net, σ-Net models are: α = 0.05, β = 0.05,
M = 40, δ = 0.1 and ζ = 1e−6. The Nuemann loss penalty γ = 0.1 and Dirichlet loss penalty
ϵ = 100 are specific to the forward problem only. While, γ = 1, τ = 0.01, ν = 10 and lastly
κ = 0.0001 are specific inverse problem. Additionally, both models use the same multi-layer
perceptron (MLP) architecture with residual connections [14] and consist of 4 hidden layers with
tanh activation and 64 neurons each. A single output neuron with no activation aids in predicting the
solutions for given mesh points. We train both these models with a batch size of 1000 using ADAM
optimizer for 3000 epochs with an initial learning rate of 0.005 and decay it exponentially with a
rate of 0.9 over intervals of every 200 epochs. We use NVIDIA Titan RTX GPU for all our training
purposes and the training time for forward and semi-inverse problems separately take around takes
∼ 8 minutes for 3000 epochs.

A.2 Forward Problem Implementation and Results

For our forward problem setup, we assume that Neumann condition is imposed on the entire boundary
where the function g in Eq. 2 is given as a trigonometric pattern [9] as follows:

g =
1√
2π

cos (ηω + ψ), n ∈ Z (9)

8



where ω is the angle along dΩ, η and ψ are the current frequency, phase respectively. We use one
current pattern where n = 1 and ψ = 0 to train u-Net for learning forward solution, which will aid
σ-Net in learning inverse problem, as indicated in previous sections.

We now show Table 2 with the evaluation results of u-Net for the forward problem on the considered
phantoms which was trained using the following loss function:

Lθu-Net = Lθ +
ϵ

|∂Ωe|
∑

e∈{∂Ωe}

|ue − fe|+ ζ ∥wu∥2 (10)

The second term of Eq. 10 enforces Dirichlet BC in Eq. 3 only on electrodes while the last term
controls the weights of u-Net using L2 regularization on θu. We study the quality of forward problem
solutions from u-Net while adding random uniform noise to the 16 electrode measurements of various
levels. As seen in these experiments, the quality degradation is obvious due to increasing levels of
noise. To counter this effect, we tune the penalty weights α, β, γ, δ on individual loss terms in Eq.
10 for increasing noise levels to improve the quality of reconstructions. The weights on Dirichlet BC
ϵ = 100, L2 model parameter regularization ζ = 1e− 6 are fixed for all experiments and phantoms.
Additionally, we use the same parameter set for all phantoms while only tuning them for a given
noise level, which showcases the robustness of our method.

Table 2: Performance evaluation of u-Net for solving Forward problem with various noise levels
Noise Std Metric Phantom 1 Phantom 2 Phantom 3 Phantom 4 Phantom 5

0
Parameters: α = 0.05, β = 0.05, γ = 0.1, δ = 0.1

MSE↓ 0.00046 0.00091 0.00027 0.00058 0.00036
PSNR↑ 39.41 33.40 46.90 47.02 40.51

0.1
Parameters: α = 0.1, β = 0.1, γ = 0.1, δ = 0.1

MSE↓ 0.0090 0.070 0.02076 0.0208 0.026
PSNR↑ 26.51 14.55 28.13 31.48 21.91

0.25
Parameters: α = 0.05, β = 0.05, γ = 1, δ = 0.1

MSE↓ 0.0426 0.1665 2.667 1.722 0.039
PSNR↑ 16.70 13.854 7.04 12.30 20.22

0.5
Parameters: α = 0.1, β = 0.05, γ = 1, δ = 0.1

MSE↓ 1.041 2.25 10.59 2.46 4.70
PSNR↑ 5.89 0.52 1.05 3.01 0.587

A.3 EB prior implementation and Evaluation

Implementation We train our EB prior on σ solutions by perturbing them with Gaussian noise
of 20 noise scales µi ∈ [2, 0.01] in order to learn by DSM training. We create a deep convolutional
neural network with multiple residual [5] connections inspired by the architectures in [11] and
[12]. In particular, our model consists of a single 3× 3 convolution layer followed by series of 16
convolutional residual and residual-downsampling blocks in the form of an encoder block of typical
convolution encoders. Each of these blocks consist of convolutional and Group normalization [15]
layers with a group size 32. We then learn the input features by gradually down-sampling them to
smaller resolutions. Upon feature map reduction at the end of the last convolution layer, we introduce
a single hidden dense layer of 256 units to jointly learn the compressed σ features along with the noise
scales, followed by a final dense layer which outputs scalar energy values. We use ELU non-linearity
for all our EBM layers except the last energy layer which has no activation. We then train this EBM
model to denoise the noise perturbed σ solutions via the objective seen in Eq. 7 for 2000 epochs,
with a batch size of 64, using ADAM optimizer with a fixed learning rate of 0.0001. The training
time takes around 15 hours while using a NVIDIA Titan RTX GPU.

Evaluation After the EBM E∗
ϕ(σ, µ) is trained, we can generate samples by using annealed

Langevin dynamics (LD) [11] sampling. We start from a fixed prior distribution such as uniform
noise and initially run LD for 100 steps with a step size of sn1

, using first µ1 noise scale and draw
samples fromEϕ(., µ1) by adding Gaussian noise. Next we draw samples fromEϕ(., µ2) by reducing
the step size and refine the samples. We continue running LD until all the noise scales are used to
sample and we finally arrive at the final step size snL

= aµ2
i /µ

2
L, where a = 0.0002 in our inference

run. During the final step of last noise scale µL, we perform 1 step of gradient descent instead of LD
to obtain an better denoised version of the σ generations. In Fig. 4, we display some of these curated
σ solutions along with their nearest neighbors in the training set which are obtained by calculating
the L2 distance between all training set examples.
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Figure 4: Comparison of training set samples to nearest generated σ using annealed Langevin
dynamics.

A.4 Hypeparameter selection during baseline comparison studies

We present a full list of hyperparameters that are used to reproduce Table!1.

Table 3: List of common hyperparameters among various baselines
Baseline α β M γ δ ϵ ζ τ ν κ

DGM 1 0 0 1 1 1 0 0 0 0
Bar&Sochen 0.01 0.01 40 1 1 1 1e-8 0.01 0 0

Ours 0.05 0.05 40 1 0.1 100 1e-6 0.01 10 0.0001

A.5 Learning rate convergence

We aim to show through this study that, the learning rate vastly effects PINN’s solution accuracy and
this inherent instability can alleviated easily by introducing the EB priors. For this study, we keep
all the parameters of our proposed method shown in Table 3 fixed and vary only the learning rate
during σ-Net training with Eq. 8. We choose 0.0001, 0.001, 0.01 and 0.1 learning rates to study their
effects on the semi-inverse PINN training with and without the EB prior. Note that, we still decay
the all these chosen learning rates using exponential decay with rate 0.9 over every 200 epochs. The
results of learning rate studies are presented in Fig. 5. As seen in this figure, the true σ value for the
ellipsoid anomalies is 5 while the smaller circular anomaly in the bottom-middle has σ = 2. We can
evidently see that the PINN without EB prior fails to converge to an accurate solution with regards to
row three. More importantly, the maximum σ values for row one and two’s color-bars indicate the
failure to reach an accurate conductivity prediction.

Clearly, the PINN without EB prior never matches the solution accurately, under all learning rates.
More adversely, the PINN outputs a trivial solution without our EB prior while using a learning rate
that is either too low or too high respectively. On the other hand, PINNs augmented with EB prior
always produce accurate solutions of slightly varying degree of MSE as seen in row three of the
figure. More importantly, the training session with extremely large learning rate 0.1 still manages to
produce a reconstruction although the accuracy is lower. This proves the robustness of our framework
and instigates clear evidence that PINN training is being improved by a very large margin while
incorporating EB priors. Other advantages such as, burden of choosing the optimal learning rate is
also alleviated.

A.6 Semi-Inverse With Noisy Data

In the final set of experiments, we test the robustness of our framework while learning from noisy
data. Initially, we add uniform noise of various standard deviation levels such as 0.1, 0.25, 0.5,
to the 16 boundary measurements. Then the u-Net learns the forward problem under these noisy
settings and learns to approximate a noisy-forward solution (see Appendix A.2 for full evaluation
of u-Net under noisy settings). While moving to the semi-inverse problem, we use data originating
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Figure 5: Training robustness of our proposed work with EB prior for various learning rates on
Phantom 1.

from the noisy u-Net predictions and evaluate σ-Net performance and test its ability to withstand
measurement noise with and without the EB prior. The evaluation results can be seen in Table 4. The
trend of performance degradation is visible while the noise addition increases, more noticeable in
some phantoms that others. Despite these noisy conditions, incorporating the EB prior during PINN
training greatly improves the σ predictions and proves robustness of the method.

Table 4: Performance evaluation of σ-Net using noisy measurements

Noise Metric Phantom 1 Phantom 2 Phantom 3 Phantom 4 Phantom 5
w/o Prior w/ Prior w/o Prior w/ Prior w/o Prior w/ Prior w/o Prior w/ Prior w/o Prior w/ Prior

0
MSE↓ 0.13 0.03 0.4 0.06 0.04 0.01 0.07 0.01 0.57 0.22
PSNR↑ 22.79 29.94 22.04 30.58 28.20 35.46 29.68 38.45 25.95 30.17
MDE↓ 0.35 0.12 0.43 0.1 0.25 0.11 0.25 0.12 0.44 0.08

0.1
MSE↓ 0.094 0.03 3.38 1.64 0.02 0.03 2.84 0.01 0.49 0.11
PSNR↑ 24.25 29.91 12.77 15.91 31.50 29.72 13.53 36.78 26.67 33.09
MDE↓ 0.29 0.16 1.09 0.52 0.21 0.21 0.02 0.17 0.42 0.23

0.25
MSE↓ 0.17 0.02 0.58 0.08 0.03 0.03 0.09 0.03 0.67 0.31
PSNR↑ 21.55 31.20 20.40 29.10 28.95 29.29 28.46 33.86 25.24 28.56
MDE↓ 0.37 0.23 0.50 0.29 0.24 0.16 0.26 0.17 0.49 0.37

0.5
MSE↓ 0.13 0.06 0.37 0.13 0.61 0.57 0.09 0.02 5.22 4.39
PSNR↑ 22.96 26.05 22.42 26.84 16.15 16.41 28.69 35.43 16.35 17.09
MDE↓ 0.34 0.13 0.42 0.13 0.14 0.22 0.25 0.17 0.90 0.34

This concludes the appendix section.
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