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Abstract

Hybrid modelling reduces the misspecification of expert physical models with a
machine learning (ML) component learned from data. Similarly to many ML algo-
rithms, hybrid model performance guarantees are limited to the training distribution.
To address this limitation, here we introduce a hybrid data augmentation strategy,
termed expert augmentation. Based on a probabilistic formalization of hybrid
modelling, we demonstrate that expert augmentation improves generalization. We
validate the practical benefits of expert augmentation on a set of simulated and
real-world systems described by classical mechanics.

1 Introduction

Recently, hybrid learning demonstrated success in complementing partial physical models with a
machine learning component, e.g., [1, 2, 3, 4, 5, 6]. These works have shown that hybrid models
are more faithful than their stand-alone physical counterparts. Moreover, training hybrid models is
more sample-efficient and generalizes better than purely data-driven models. Indeed, the underlying
physical models are often valid beyond the training data, and therefore, the corresponding hybrid
models shall generalize to some unseen scenarios.

In this work, we first observe that current hybrid learning algorithms are sub-optimal in the amortized
inference setting – when we aim to build hybrid models that are valid for various test configurations.
Contrary to the common belief that hybrid learning achieves better generalization than black box ML
models, we argue that hybrid learning algorithms do not yet meet their promise regarding robustness
in amortized settings. Motivated by this observation, we introduce expert augmentations to extend
the range of validity of hybrid models. Our experiments demonstrate that the proposed augmented
hybrid models (AHMs) achieve generalization superior to standard hybrid learning algorithms.

2 Hybrid learning

We formalize hybrid learning with the probabilistic model depicted in Figure 1a. The expert model,
often derived from first-principles physics, is a conditional density p(ye|x, ze) that describes the
distribution of the expert response Ye to an input x together with the physical parameters ze. The
interaction model is a conditional distribution p(y|x, ye, za) that aims to correct the expert model.

Our goal is to create a robust predictive model p(y|x, (xo, yo)) of the random variable Y , given the
input x and independent observations (xo, yo) of the same system. Given an accurate estimation of
za and ze, we can predict the distribution of Y for any input x to the same system. In particular, the
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(a) A hybrid probabilistic model relates
the output Y to the input X provided
the latent variables Ze and Za. The ex-
pert model defines the conditional den-
sity p(ye|x, ze), where Ye is an ap-
proximation of Y . Hybrid learning aims
at learning the conditional distribution
p(y|x, ye, za).
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p(ze|x, y) ≈ qψ(ze|x, y)︸ ︷︷ ︸

︷ ︸︸ ︷
p(x, y|ze) = Ep(za)p(ye|x,ze,)[p(x)p(y|x, ye, za)]

≈ Ep(za)p(ye|x,ze)[p(x)pθ(y|x, ye, za)]

(b) Visualization of the distribution shifts considered in this work. The train support (in blue) Ω
of (x, y) results from (za, ze) ∈ Za × Ze. The test supports (in red) are denoted with a tilde
symbols as Z̃e for ze and Ω̃ for (x, y). The augmented support (in green) includes both train and

test scenarios and corresponds to (za, ze) ∈ Za×
+

Ze . The outer violet domain depicts a situation
in which the domain of za is also shifted. Hybrid modelling algorithms alone may learn a mapping

pθ :
+

Ze →
+

Ω but augmentation is necessary to learn the inverse mapping qψ :
+

Ω →
+

Ze.

Figure 1

Bayes optimal hybrid predictor pB is
pB(y|x, (xo, yo)) = Ep(za,ze|(xo,yo)) [p(y|x, za, ze)] . (1)

In the amortized setting, we aim to learn a model of both the predictive model p(y|x, za, ze) and
of the posterior over the parameters p(za, ze|(xo, yo)). We will see that existing hybrid learning
algorithms neglect the importance of building a robust encoder p(za, ze|(xo, yo)) to make predictions
in out-of-distribution (OOD) settings.

2.1 Hybrid generative modelling

We consider deterministic expert models fe : X × Ze → Ye, for which pθ(ye|x, ze) is a Dirac
distribution. Given a dataset D = {(x(i), y(i))}Ni=1 of N IID samples, we aim to learn the interaction
model pθ(y|x, ye, za) that fits the data well and minimally corrects the expert model. Two recent
approaches, the APHYNITY algorithm [1] and the Hybrid-VAE [2, HVAE], compete in this setting.

APHYNITY. Yin et al. [1] augment an expert ordinary differential equation (ODE) with an additive
correction. They assume the hybrid models can fit the data perfectly. This assumption is equivalent to
taking a Dirac distribution for pθ(y|x, ye, za). They propose solving the following problem

min
ze,Fa

||Fa|| s.t. ∀(x, y) ∈ D,∀t,dyt
dt

= Fe(yt) + Fa(yt) with y0 := x, (2)

where || · || is a norm on the function space, Fa : Yt×Za → Yt is a learned function, Fe : Yt×Ze →
Yt is the expert model, and D is a training dataset, which contains initial states x := y0 and k-long
sequences y ∈ Y := (Yt)k. We amortise APHYNITY as suggested in the supplementary material of
[1]. The encoder network gψ(·, ·) : X ×Y → Za ×Ze corresponds to a Dirac distribution located at
gψ . The interaction model is the solution of the augmented ODE in (2).

Hybrid-VAE (HVAE). In contrast to APHYNITY, the HVAE is not limited to additive interactions,
nor to ODEs. The HVAE is a variational auto-encoder (VAE) in which the decoder specifically
follows Figure 1a. The encoder gψ(x, y) predicts a posterior distribution over za and ze. The model
is trained with the classical Evidence Lower Bound on the likelihood (ELBO) and three regularizers
RPPC , RDA,1, and RDA,2 that encourage the hybrid model to stay close to the expert model. We
refer the reader to Takeishi and Kalousis [2] for more details. The predictor takes the form described
by (1) where p(za, ze|(xo, yo)) is approximated by the encoder qψ(za, ze|x, y) and p(y|x, za, ze) by
the learned hybrid generative model.

3 Robust hybrid learning

We consider the important sub-class of distribution shifts for which the marginal train distribution
p(ze) and test distribution p̃(ze) may be different but the marginals of za and x are constant. The
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encoder of classical hybrid models fails in this context; it is unable to predict accurately ze. In
consequence, the hybrid model derived from (1) does not generalize. We address this failure by
introducing expert augmentation to fine tune the encoder. Our goal is to learn a predictive model that
is exact on both the train and shifted test domains. A predictive model p̂(a|b) is E-exact, or exact on
the sample space E , if p̂(a|b) = p(a|b)∀(a, b) ∈ E for a given ground-truth p(a|b). A model is robust
to a test scenario if its exactness on the training domain implies exactness on the test domain.

We now define an augmented distribution
+

p(ze) over the expert variables whose support
+

Ze includes
the joint support Ze ∪ Z̃e between the train and test distribution of the physical parameters. As

depicted in Figure 1b, we denote the corresponding support over the observation space X ×Y as
+

Ω,Ω,
and Ω̃, respectively. In this context, and with A1, we demonstrate that even under perfect learning,
classical hybrid learning algorithms do not produce an Ω̃-exact predictor while our augmentation
strategy does.

Assumption 1 (A1): Hybrid modelling learns an interaction model pθ(y|ye, x, za) that is
+

Ω-exact.

The hypothesis A1 is consistent with the recent literature on hybrid modelling [1, 2], which assumes
that pθ(y|ye, x, za) should not be overly complex. For example, extrapolation to unseen ye should

hold for additive defects. That said, the exactness of the interaction model pθ on
+

Ω is insufficient

to prove that the predictive model pθ,ψ is
+

Ω-exact. Indeed, the encoder qψ is only trained on the
training data and cannot rely on a strong inductive bias in contrast to pθ. Thus, even if the encoder

is exact on the training distribution, the corresponding predictive model is not
+

Ω-exact. While the
decoder’s performance are not limited to the training scenarios thanks to the broader validity of the
expert model, the encoder does not generalize to unseen settings as it is purely data-driven.

3.1 Expert augmentation

We increase the encoder’s generalization domain by training it on additional synthetic configurations
generated by the hybrid decoder. Once trained, the hybrid model is composed of an encoder qψ and

an interaction model pθ that are respectively Ω- and
+

Ω-exact. We create an augmented training set

with support over
+

Ω by sampling physical parameters ze ∈
+

Ze. Then, we finetune the encoder qψ on
+

Ω. Under perfect training, the predictive model becomes robust; pθ,ψ(y|x, (xo, yo)) is
+

Ω-exact.

After training a hybrid model, we have to decide on a realistic distribution
+

p(ze) in order to create

the dataset
+

D by sampling from the hybrid model. The augmented training set
+

D contains ground
truth values for the expert’s variables ze, in contrast to the original dataset. We freeze the interaction

model, as we assume it is
+

Ω-exact. We only fine-tune the encoder qψ on
+

D with a combination of
the loss function ℓ of the original hybrid learning algorithm and supervision on the latent variable
objective. We then learn a decoder that solves

ψ⋆ = argmin
ψ

E+

D
[ℓ(x, y; θ, ψ)− log qψ(ze|x, y)] .

4 Experimental results

We assess the benefits of expert augmentation on two synthetic problems described by an ODE

dyt
dt

= Fe(yt; ze) + Fa(yt; za). (3)

The initial state y0 corresponds to X , and the sequence of states y1:t1 := [yi∆t]
t1/∆t
i=1 to Y .

The damped pendulum: the system’s state at time t is yt =
[
θt θ̇t

]T
, where θt is the angle of

the pendulum at time t and θ̇t its angular speed. The evolution of the state over time is described by
(3), where ze := ω, za = α, Fe :=

[
θ̇ −ω2

0 sin θ
]T

, and Fa :=
[
0 −αθ̇

]T
. The train domain is

generated from Ze := [1.5, 3.1] and Za := [0, 0.6] and at testing Z̃e := [0.5, 1.5]. The 2D reaction
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diffusion: this is a 2D FitzHugh-Nagumo model on a 32 × 32 grid. The system’s state at time
t is a 2 × 32 × 32 tensor yt = [ut vt]

T . The evolution of the state over time is described by
Fe := [a∆ut b∆vt]

T and Fa := [Ru(ut, vt; k) Rv(ut, vt)]
T , where ze := {a, b}, za = {k}, ∆

is the Laplace operator, and the reaction terms areRu(u, v; k) = u−u3−k−v andRv(u, v) = u−v.
The train domain is generated from Ze := [1e−3, 2e−3]× [3e−3, 7e−3] and Za := [3e−3, 5e−3]

and at testing Z̃e := [2e−3, 4e−3]× [1e−3, 1e−1]. The double pendulum: we use the real-world
dataset of a double pendulum introduced by Asseman et al. [7] and consider a friction-less system to
derive an expert model; see, e.g., [8] for the details. This idealized model misses non-negligible effects
such as errors in extracting the pendulum’s positions, frictions, or vibrations. This experiment allows
us to validate the effectiveness of expert augmentation when the exact nature of the mispecification
is unknown. We use low-energy configurations for the training set and high-energy for the test to
enforce a distribution shift. The validation set contains samples whose energy is between the train
and test examples. In our experiment, the initial positions of the pendulum are given. The encoder
network must predict the initial angular speed given a partial observation of the pendulum position
for a few consecutive measurements.

Figure 2: The average log-MSEs over ten runs. We compare HVAE (in red) and
APHYNITY (in green), in light colours, to their expert augmented versions HVAE+
and APHYNITY+, in darker colours, and to a simple baseline (in grey). On the test
sets, the proposed AHMs outperform the original models. Augmentation conserves
good performance on the validation set.

Dataset Pendulum RLC
Val. Test Val. Test

APH. 6±2 66±9 2±0 27±2

APH.+ 6±2 10±4 2±0 3±1

HVAE. 3±1 117±10 2±0 32±10

HVAE+ 2±1 11±2 2±0 2±0

Table 1: The relative errors on ze (in %) over ten
runs. The + denotes augmented versions. The accuracy
of APHYNITY and HVAE collapses on the OOD test set
while the augmented versions’ performance is stable.

Metric Log-MSE Rel. Err.
Dataset Train Valid Test Train Valid Test

Exp. −4.4±0 −3.9±.4 2.8±.4 324±3 186±1 222±3

APH. −6.7±1.2 −5.2±.8 −3.4±.4 211±90 106±41 147±61

APH.+ −6.1±.6 −5.3±.5 −4.4±.3 157±27 71±10 72±10

Table 2: The average log-MSEs and average relative errors on the initial angular speeds of the double pendulum over three runs for three
predictive models: the expert model only (Exp.), APHYNITY (APH.) and APHYNITY followed by expert augmentation (APH.+). Expert
augmentation outperforms other models except for predicting the state evolution on the training set.

Our synthetic experiments show the effect of expert augmentation on APHYNITY and HVAE. All
models explicitly assume that the interaction model follows the structure of (3) where Fa is a small
neural network. We select the best models from validation performance.

Figure 2 and Table 1 demonstrate that HVAE and APHYNITY are not robust to OOD test scenarios in
comparison to the corresponding proposed AHMs. We only compare performance in OOD settings
in Figure 2 as hybrid models have already demonstrated greater performance than non-hybrid models
in the literature [1, 2]. Both algorithms strongly benefit from expert augmentation. Table 1 shows
that the encoder does not predict the physical parameters perfectly. This failure indicates that the
encoder is not Ω-exact, and neither should the decoder. However, this departure from an ideal setting
does not preclude the effectiveness of the proposed expert augmentation. Expert augmentation also
improves the parameter estimation in the OOD setting. The augmented encoder accurately estimates
the physical parameters in the IID and OOD settings. Finally, Table 2 show that the proposed expert
augmentations is also effective in practical settings. Overall, AHMs outperform classical hybrid
learning both in the predictive accuracy and in inferring the expert variables.

5 Conclusions

We have presented a simple augmentation strategy, termed expert augmentation, to improve the
generalization capabilities of hybrid learning models to scenarios where the expert model is valid.
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Broader Impact Statement

This work simplifies the combinations of domain knowledge within machine learning models. As
with most machine learning algorithms, the real-world impact may be positive or negative. However,
improving robustness and interpretability of machine learning models may eventually help prevent
harms caused by the failure and unpredictability of purely data-driven models under real-world
distribution shifts.

References
[1] Yuan Yin, Vincent Le Guen, Jérémie Dona, Emmanuel de Bézenac, Ibrahim Ayed, Nicolas
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