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Abstract

Molecular complexity has been proposed as a potential agnostic biosignature — in
other words: a way to search for signs of life beyond Earth without relying on “life
as we know it.” More than one way to compute molecular complexity has been
proposed, so comparing their performance in evaluating experimental data collected
in situ, such as on board a probe or rover exploring another planet, is imperative.
Here, we report the results of an attempt to deploy multiple machine learning (ML)
techniques to predict molecular complexity scores directly from mass spectrometry
data. Our initial results are encouraging and may provide fruitful guidance toward
determining which complexity measures are best suited for use with experimental
data. Beyond the search for signs of life, this approach is likewise valuable for
studying the chemical composition of samples to assist decisions made by the rover
or probe, and may thus contribute toward supporting the need for greater autonomy.

1 Introduction

Background: The ability to detect signs of life beyond Earth is a significant frontier in astrobiology,
and a core objective in humanity’s exploration missions in space [1]. However, finding evidence
for extraterrestrial life requires an operational, unambiguous definition of “life”, as well as a set of
agreements on the kind of measurements and results as acceptable claims [2]. The burden of proof is
extraordinary, and a universal agreement on what “life” is does not currently exist [3]. Alternatively,
even without a precise definition of life, it has been hypothesized that complex molecules are a
corollary to biologically driven activity [4, 5], and intrinsic metrics of molecular complexity (MC)
can be used as an agnostic biosignature free from biases from Earth-based life form as we know
it [6–8]. The key idea is that, for a suitable definition of molecular complexity, we expect that it
is statistically unlikely that a large amount of any given complex molecule would be present in
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an environmental sample due to random, abiotic processes. Consequently, if complex molecules
are found at a higher proportion in a given sample, it follows that there is likely some form of
biologically driven activity at work within the local environment [9, 10].

Molecular complexity (MC): Fundamentally, MC measures are numeric features intrinsic to a
molecule that represent an abstraction of its structure (or formation process) while also characterizing
its information content. Intuitively, one may expect MC to increase with the molecular size, the
multiplicity of bonds, or the presence of heteroatoms, while it should decrease with increasing sym-
metry [11]. MC is usually not considered as an end in itself, but used in a relative fashion to compare
molecules or to characterize chemical reactions. Various definitions of MC have been proposed in the
literature (see, e.g., the introduction of Böttcher [12] for an overview), typically building on concepts
from graph and information theory. In this work, we focus on the following three definitions:

1. Bertz complexity CT [13]: The “first general index of molecular complexity.” It combines concepts
from graph and information theory and is defined as CT = C(η) + C(E), where C(η) describes
the bond structure and C(E) the complexity due to heteroatoms. Calculating CT is fast and scales
linearly with the molecule size. We compute CT using the BertzCT method from RDKit [14].

2. Böttcher complexity Cm [6, 12]: An information-theoric measure that is based on the information
content in the microenvironments of all atoms; it is additive and simple to calculate even for large
molecules. Our computation of Cm uses a freely available open source implementation [15].

3. Molecular Assembly index (MA) [7]: Also known as pathway complexity, the MA represents
the minimum number of steps required to assemble a molecule from fundamental building blocks.
MA is particularly well-suited to biosignature detection while being experimentally verifiable [8].
It is at least as hard as NP-complete to compute [16], requiring hundreds of CPU hours even for
moderately sized molecules. We use a (currently non-public) implementation kindly provided
by the authors of [7].

We note that, to first order and at low molecular weights, these three measures are strongly correlated;
the mass of the molecule acts as a confounder constraining the maximum complexity. When
regressing out the mass, however, the correlation becomes less strong, and it becomes apparent that
CT , CM and MA each capture different aspects of the molecule.

Inferring MC in practice: The above notions of MC are theoretical in that they are defined for a
given representation of a molecule (e.g., a graph). However, for MC to be valuable as a biosignature
in practice, for example on board a spacecraft deployed to the outer Solar System, we need to be able
to make such a determination fully in situ for any given sample. One prime candidate to enable this is
mass spectrometry (MS; see below): Virtually all upcoming planetary exploration missions, such as
the Dragonfly mission to Titan [17, 18], or the proposed Europa Lander [19] and Enceladus Orbilan-
der [20], will carry mass spectrometers to analyze their targets. However, assessing the complexity of
a sample in the “classical way”—inverting the mass spectrum to infer the molecule and then comput-
ing the MC using an algorithm of choice—may exceed the computational capabilities of a spacecraft.
Sending all data back to Earth for analysis may also not be an option, for deep space communications
are generally expensive, low-bandwidth, and have large round-trip delays. Fortunately, Marshall et al.
[8] have already demonstrated that it is possible to infer MC directly from MS data by showing a clear
correlation between the number of peaks in a high-resolution tandem MS of a molecule and its MA.

Contributions: In this work, we take these studies further and explore different machine learning
(ML) methods and their ability to infer MC from MS. Our preliminary results are encouraging and
provide evidence that the combination of MS and ML enables us to infer molecular complexity in the
field. Even if we do not find extraterrestrial life, this may become a valuable tool to inform decisions
about which targets to explore in greater detail, and can help fill the need for more autonomous
space missions [1, 21]. Figure 1 illustrates where this capability might fit into a broader, automated
analysis pipeline of a rover or probe exploring another celestial body.

2 Dataset generation

Mass spectrometry (MS): MS is an analytical technique used to determine the structure of a molecule
or identify unknown molecules in a sample. Molecules are ionized and fragmented (typically using
collision-induced dissociation), and the mass-to-charge ratios (m/z) of all fragments is measured.
The results are collected as a series of peaks with corresponding m/z values, called a mass spectrum.
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Figure 1: A schematic workflow that illustrates where our work on inferring MC from mass spectral
data fits into the “bigger picture” of space exploration and the search for traces of extraterrestrial life.
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Figure 2: Distributions of the three complexity scores in our training and evaluation (test) dataset.

Dataset generation: As no ready-made dataset for our task—inferring MC from MS data—exists,
we created our own. For this, we queried a public database (the NIST WebBook [22]), retrieving all
molecules below 1000 Dalton for which an MS was available. These molecules were then appended
with other basic chemical properties, including our three MC metrics. Empirical MS data on NIST
were taken using electron ionization at a m/z-resolution of 1 (standard MS as opposed to higher
resolution tandem MS that employs a variety of techniques). This is approximately comparable to the
target resolution of 0.4 to 3 of the DraMS instrument onboard the Dragonfly mission [18]. Our final
dataset consists of 17 021 unique molecules with associated MS, randomly split into a training set with
12 000 molecules and an evaluation set with 5021. We are showing the respective distributions of our
three complexity metrics in fig. 2. The major limitation of the dataset generation was the computation
of MA, taking 65 000+ CPU hours over hundreds of compute-optimized nodes on Google Cloud in
parallel. Computing all Böttcher and Bertz scores together took around 20 min of CPU time. To
facilitate further research, we plan to release our dataset with an upcoming version of our work.

3 Experiments and results

Predicting MC from MS: We compare four different approaches, all of which take a (pre-processed)
mass spectrum, and output all three complexity measures at once (i.e., multiple regression):

1. Baseline: A linear regression (with L2 regularization) from the number of peaks in the MS to the
complexity measure. Marshall et al. [8] have reported a clear correlation (ρ = 0.89) for the case
of the MA, hence we consider this our baseline. Pre-processing the MS by removing, for example,
all peaks smaller than 5% of the highest peak, did not seem to improve the performance.

2. Linear: A linear regression (with L2 regularization) that receives a fixed-length representation of
the mass spectra (i.e., a histogram with a 1000 equally spaced bins from 0 Da to 1000 Da) as input.

3. MLP: A fully-connected neural network (MLP) that operates on the same binned spectrum as the
linear model. All prediction targets were normalized to [0, 1] using a MinMaxScaler. The network
has 3 Linear layers (with 1024 units for the “hidden” layers) and uses LeakyReLU activations,
dropout (p = 0.2), and batch normalization. Experiments with more layers (or units) did not seem
to improve the performance. We found the networks very prone to overfitting, perhaps not least
due to the limited training data. Among the various solutions we tried (e.g., increasing dropout),
adding random noise to the input spectra during training had the best mitigating effect here.

4. XGBoost: Gradient boosted trees as implemented by XGBoost [23], again using the binned mass
spectrum. We use default parameters except n_estimators=1000 and tree_method="hist".

We trained every model five times using different random seeds that control the train / validation split,
as well as the model initialization (where applicable). Results are reported as ensemble averages.

Our main results, in the form of relative prediction errors on the evaluation set, are summarized in ta-
ble 1 and fig. 3. Unsurprisingly, all models outperform the naïve baseline (reducing the error by more
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Figure 3: Distribution of relative predictions errors on the test set (computed as (t−p)/t, where t is the
true and p the predicted complexity value given by an ensemble average of five models corresponding
to five different random seeds) for our three different complexity metrics and four model types.

Table 1: Mean relative predictions errors on the test set (computed as |t− p|/t, where t is the true
and p the predicted complexity value given by an ensemble average of five models), as well as the
5%, 50% and 95% percentiles, for all model types and complexity scores.

Bertz Böttcher MA

Baseline 1.40 [0.04, 0.47, 4.68] 0.55 [0.03, 0.32, 1.79] 0.29 [0.02, 0.21, 0.84]
Linear 1.22 [0.03, 0.34, 3.43] 0.49 [0.02, 0.28, 1.50] 0.25 [0.02, 0.18, 0.72]
MLP 0.51 [0.01, 0.15, 1.07] 0.29 [0.01, 0.18, 0.81] 0.15 [0.01, 0.10, 0.43]
XGBoost 0.42 [0.00, 0.14, 0.93] 0.27 [0.00, 0.16, 0.79] 0.14 [0.00, 0.09, 0.41]

than 50% in best case), and non-linear models perform better than the linear one. More interestingly,
we find that there is a consistent trend across all models that MA is easier to predict than Böttcher com-
plexity, which in turn is easier to predict than Bertz complexity (evidenced by respectively lower pre-
dicted errors). We speculate that this may have to do with the definition of the MA, which is, in a way,
conceptually similar to the idea of mass spectrometry: The MA counts the number of steps to assemble
a molecule from smaller pieces, while MS observers the patterns that emerge when a molecule is frag-
mented. Finally, fig. 3 shows that all models are slightly biased towards over-estimating MC. Closer
inspection reveals that most of this bias is caused by molecules with (relatively) low MC values, and
we hypothesize that the bias may be an effect of the fact that our MC metrics are lower-bounded by 0.

Things that did not work: We also briefly tried the following methodologically more sophisticated
ideas, but found that both approaches performed worse than the MLP and XGBoost regressor above:

1. Encode, Aggregate, Predict: Every peak of a MS—given by a position-intensity pair (pi, ii)—is
processed separately by an encoder E that produces a representation zi = E(pi, ii). All zi of one
MS are then aggregated as z = mean(zi), and a predictor network P estimates the MC from z.

2. Transfer learning: The core idea here was to separate the task of inferring a useful representation
of a molecule from the estimation of its complexity. Besides inferring MC from MS data, we
have also worked on speeding up computation of MC via surrogate models: these can predict
MC from a string-based representation of a molecule. One such model consists of an LSTM that
takes in the SELFIES representation [24] of a molecule and produces an embedding from which
a predictor MLP P then estimates the MC. No MS data is required here, allowing us to train this
model on a much larger data set (around 400k molecules). To leverage this bigger data set also
for the MS to MC task, we attempted transfer learning: training an encoder network E to take
in MS and pass the outputs to a (frozen) version of the pre-trained P to predict the MC.

4 Discussion and outlook

We have demonstrated how ML methods can infer three different MC measures directly from
MS—not only the MA (for which we improve over the current baseline) but also the Bertz and
Böttcher complexity, albeit with a higher relative prediction error. These differences in performance
may provide further insights: Despite the high computational cost of MA, we observed that it is
easier to determine from experimental data than CT and Cm. This may arise from a similarity
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between the computation method of MA and the fragmentation processes within a mass spectrometer
and could indicate that MA is indeed particularly well suited as a potential biosignature.

Regarding the limitations of this work, we consider the size of our data set the main Achilles’ heel.
We believe that more data, particularly for high-MC molecules, will be essential to move forward.

From the long-term perspective, we imagine future rovers and probes equipped with MS could
use ML to rapidly estimate multiple measures of MC to autonomize decisions and discoveries as
they traverse the solar system. While this work targets detecting life beyond Earth, deriving MC
metrics efficiently from MS could also benefit applied sciences such as chemical engineering and
pharmaceutical discovery, meeting the challenges of characterizing environmental samples collected
across multiple disciplines.
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