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Abstract

Extreme event are sudden large-amplitude changes in the state or observables of
chaotic nonlinear systems, which characterize many scientific phenomena. Because
of their violent nature, extreme events typically have adverse consequences, which
call for methods to prevent the events from happening. In this work, we introduce
the control-aware echo state network (Ca-ESN) to seamlessly combine ESNs and
control strategies, such as proportional-integral-derivative and model predictive
control, to suppress extreme events. The methodology is showcased on a chaotic-
turbulent flow, in which we reduce the occurrence of extreme events with respect
to traditional methods by two orders of magnitude. This works opens up new
possibilities for the efficient control of nonlinear systems with neural networks.
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Figure 1: (a) Controlled and uncontrolled system’s evolution. (b) Example of a suppressed extreme
event. The controller acts before the event occurs based on the echo state network’s prediction.

1 Introduction

Extreme events arise in a variety of natural and engineering systems, in the form of rogue waves,
atmospheric events and power grid shocks, to name a few [6]. These events often have negative
consequences, thus, developing methods for their prediction and control is an active field of research
[6, 16]. At the same time, the events usually show no apparent early sign of their occurrence, which
makes their control from direct observations especially difficult. Because of this, control of extreme
events is typically performed by assuming knowledge of the governing equations of the system,
whose prediction via time integration activates the controller in advance [12]. When the governing
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equations are not known, data-driven modelling becomes necessary. To this end, echo state networks
(ESNs) [8], which are state-of-the-art machines for the prediction of nonlinear dynamical systems,
offer a promising alternative [19]. ESNs have been shown to predict extreme events, and deployed
to activate basic controllers for their suppression [13, 15]. These works, however, considered only
simplistic prescribed control strategies, which have limited the applicability and performance of the
controllers. We propose the control-aware ESN (Ca-ESN) to seamlessly integrate the prediction
of ESNs in the formalism of established controllers, such as proportional integral derivative (PID)
controllers [1] and model predictive control (MPC) [4, 5], to efficiently suppress extreme events. We
showcase the Ca-ESN in a model of turbulence [10], in which extreme events occur as intermittent
burst in the total kinetic energy of the flow.

2 The control problem: suppression of extreme events

We analyse dynamical systems that evolve according to a set of discretized governing equations

q(ti+1) = f(q(ti),u(ti)), (1)

where q(ti) is the state of the system, which shows extreme events in the observable, k(ti) = g(q(ti))
(Fig. 1). We assume that f is not known, and that data on q is available. We wish to suppress the
events through the control input, u(ti), whose objective is to decrease the number of extreme events
while acting as infrequently as possible on the system. This is translated into a quantitative goal
through the average reward

R =
1

N

N∑
i=1

r(ti), (2)

where r(ti) is the user-defined reward at each time step. First, to prevent extreme events from
happening, we set a negative reward, r(ti,e) = −1, for each time step, ti,e, at which the system is
experiencing an event. Second, to find control strategies that act rarely on the system, we select a
system-dependent (smaller) negative reward, r(ti,c), for every time step, ti,c, in which the control
strategy is activated. This is to discourage the activation of the control strategy when it is not needed.
The reward is set to zero for all other time steps. To further characterize the controlled system, we
compute the total number of time steps that the system experiences an extreme event, Ne, or control,
Nc. By doing so, we analyse how often (i) the system shows extreme behaviour through the extreme
events ratio, Pe, and (ii) control is active through the control ratio, Pc,

Pe =
Ne

N
, Pc =

Nc

N
. (3)

3 Control-aware echo state network

To suppress extreme events, we employ standard controllers. We first consider the proportional-
integral-derivative (PID) controller [1], c(k(t)),

c(k(t)) = Kpk(t) +Kd
dk(t)

dt
+Ki

∫ t

t−τi

k(t′)dt′; (4)

where the proportional, Kp, derivative, Kd and integral, Ki, multipliers and the integral time, τi, are
selected through Bayesian optimisation [17] to optimize the average reward. Secondly, we analyse
nonlinear model predictive control (MPC), which finds the optimal control sequence within a future
time window [4]. In MPC, at every control step, t0, we solve a constrained optimization problem to
maximize the average reward over the future (receding) time horizon, τhor = Nhordt,

max
uopt(ti)

Rhor =
1

Nhor

Nhor∑
i=1

r(ti)

subject to q(ti+1) = f(q(ti),uopt(ti)) for i ≤ Nopt

q(ti+1) = f(q(ti),ufix(ti)), for Nopt < i < Nhor (5)

where Nopt ≤ Nhor are the time steps at which we optimise the control law, [uopt(t0), ...,uopt(t0 +
Noptdt)] [11]. The system is controlled for the remaining time steps within the time horizon by a
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prescribed (fixed) control law, ufix = 0 (no control). We use two different strategies, ufix and uopt,
to decrease the search space and therefore the computational cost of solving (5).

To enable the controllers, we propose the Control-aware Echo State Network (Ca-ESN). Echo state
networks [8] nonlinearly expand the inputs into a high-dimensional reservoir, r(ti), from which the
output of the network is computed as a linear combination. The Ca-ESN provides a data-driven
model for the iterative evolution of the controlled system, q̂(ti+1) = fESN(q(ti),u(ti)),

r(ti+1) = tanh (σinWinqin(ti) + ρWr(ti) + σcWcu(ti)) ,

q̂(ti+1) = r(ti+1)
TWout; (6)

where the matrices Win, W, and Wc are randomly generated and fixed [9]. The hyperparameters
σin and σc are optimized through Bayesian optimisation and recycle validation [14]. Because the
evolution of the system is Markovian (1), we set ρ = 0 to eliminate the recurrence in time of the
network. In this way, we simplify the architecture, thereby (i) reducing its computational cost and (ii)
making it equivalent to a one-layer extreme learning machine [7]. The weights of the output matrix,
Wout, are the only trainable parameters. Thanks to this architecture, training the network needs only
solving a ridge regression problem [9]. In this way, training does not require either backpropagation
or gradient descent, which is usually problematic in time series forecasting [2].

Once the networks are trained, we integrate the Ca-ESN predictions in the formalism of controllers
(4)-(5). In the PID controller, we use the maximum of the predicted observable for the uncontrolled
system in the horizon τhor, as the control variable, k(t) = max(k̂ESN (t, t + τhor)). Because
we use the maximum, we simplify the controller by neglecting the derivative and integral terms
(Kd = Ki = 0). A schematic implementation is shown in Algorithm 1. In MPC, the network
provides the model: fESN(q(ti),u(ti)) predicts the future evolution of the controlled system in (5) 1 .

Finally, we remark that the current methodology can be extended to other control strategies, such as
reinforcement learning [18]. This can be achieved by employing the Ca-ESN prediction as part of the
observations on which the control strategy bases its decision.

Algorithm 1 PID control with the Ca-ESN
for t← t0 to tN do ▷ Every control step

q̂(t) = q(t)
k(t) = g(q̂(t))

for t′ ← t to t+ τhor do ▷ Evaluate the Ca-ESN up to τhor
q̂(t′ + dt) = fESN(q̂(t

′),u(t′))
k(t) = max(k(t),g(q̂(t′ + dt))) ▷ Save maximum of the observable

end for
u(t) = c(k(t)) ▷ Select control with PID
q(t+ dt) = f(q(t),u(t)) ▷ Apply control

end for

4 Results

To test the Ca-ESN, we consider the MFE, which is a qualitative model of turbulence [10]. The
dynamics are governed by the non-dimensional incompressible Navier-Stokes equations

∇ · v = 0,
dv

dt
+ (v · ∇)v = −∇p+ 1

Re
∆v + f , (7)

where v is the velocity, p is the pressure, Re is the Reynolds number, and f is the body forcing
that sustains turbulence. The MFE model is generated by projecting (7) onto compositions of
Fourier modes, which spawns nine nonlinear ordinary differential equations for the amplitudes
of the modes, qi(t), which become the unknowns of the system [10]. To integrate the equations,
we use the same parameters and boundary conditions as [15]. For a wide range of Reynolds
numbers, the system displays chaotic dynamics characterized by extreme events of the kinetic energy,
k(t) = 1

2

∑9
i=1 q

2
i (t); k(t) > ke = 0.1 (Fig. 1, 2a), whose probability decreases with Re [15].

1The model is implemented in JAX [3], and publicly available on GitHub.
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We analyse the highly extreme Re = 400 regime, and suppress extreme events by temporarily
increasing the Reynolds number, i.e, u(ti) = Re(ti) = 2000, following [15]. We set the control
penalisation term, r(ti,c) = −0.15, for the two regimes to be equally desirable on average (R400 ≃
R2000), so that a combination of the two is found by the controller. In this control setting, (i) the PID
controller is activated when c(t) > kc, where kc is optimised instead of the proportional multiplier
(Kp = 1), and (ii) the optimisation of the discrete MPC problem is solved through complete search.

We test the control strategies on 100,000 time series of length 20 Lyapunov times (LT)2. One repre-
sentative time series, in which the event is suppressed through the Ca-ESN proportional controller,
is shown in Fig. 1b. The network is trained on 50 time series only, and evolves for an horizon
τhor = 4 LTs, with a control horizon Noptdt = 1 LT, which are selected as a trade-off between the
computational cost of the prediction and its capability of suppressing extreme events. The controllers
act on the system every 10 time units, which result in O(107) control steps analysed for each strategy.

Figure 2 shows the quantitative results. First, the standard PID controller decreases the number of
extreme events by more than one order of magnitude compared to the uncontrolled (NC) system
(Fig. 2c). Second, integrating the Ca-ESN in the proportional controller (PESN) and model predictive
control (MPC), markedly improves the reward of the controllers with respect to the literature (Lit)
[15] (Fig. 2b). The Ca-ESN controllers decrease the occurrence of extreme events, while requiring
significantly fewer actions than other methods (Fig. 2c,d). This shows that employing the networks
is highly beneficial for the suppression of the events. Third, the Ca-ESN controllers decrease the
occurrence of extreme events with respect to always controlling (AC) the system (Fig. 2c). This
indicates that optimally selecting the active control strategy is more effective than passive control.

[15]
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Figure 2: (a) Probability density function of the kinetic energy, (b) average reward, (c) extreme event
ratio and (d) control ratio for different control strategies.

5 Conclusions

We propose the control-aware echo state network (Ca-ESN) to integrate ESNs into the formalism of
conventional control strategies to suppress extreme events in chaos. The architecture is demonstrated

2The Lyapunov time is the inverse of the Lyapunov exponent of the system, which measures the average
divergence of close-by trajectories in chaotic dynamics. In the MFE, 1LT = 0.0163−1 time units [15].
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on a turbulent flow, in which we combine the networks with PID controllers and model predictive
control. We show that the Ca-ESN (i) decreases the occurrence of extreme events up to two orders of
magnitude with respect to both the uncontrolled and standard PID scenarios, (ii) requires an order of
magnitude fewer actions to do so, and (iii) is more effective in suppressing the events than controlling
the system at all times (passive control). This work opens up opportunities for the efficient control of
extreme nonlinear dynamics from data, without the knowledge of the governing equations.
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