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Abstract

Collider data generation with machine learning has become increasingly popular
in particle physics due to the high computational cost of conventional Monte
Carlo simulations, particularly for future high-luminosity colliders. We propose
a generative model for point clouds that employs an attention-based aggregation
while preserving a linear computational complexity with respect to the number of
points. The model is trained in an adversarial setup, ensuring input permutation
equivariance and invariance for the generator and critic, respectively. To stabilize
known unstable adversarial training, a feature matching loss is introduced. We
evaluate the performance on two different datasets. The former is the top-quark
JETNET150 dataset, where the model outperforms the current state-of-the-art
GAN-based model, despite having significantly fewer parameters. The latter is
dataset 2 of the CaloChallenge, which comprises point clouds with up to 30× more
points compared to the first dataset. The model and its corresponding code are
available at https://github.com/kaechb/MDMA/tree/NeurIPS.

1 Introduction

Machine Learning (ML) has a longstanding presence in High Energy Physics (HEP) with its appli-
cations becoming standard across all stages of HEP data analysis [1]. While supervised learning
has predominantly been used, there is a growing interest in generative models due to the detailed
Monte Carlo simulations (MC) typically utilised in HEP. They provide near-perfect representations
of experimental measurements, but they demand vast computing resources [2]. As higher and higher
luminosities are reached (e.g. at the High Luminosity LHC) [3] this becomes a more and more
pressing problem. A potential solution could be provided by generative models, as they are orders of
magnitude faster during inference and have proven to perform well, e.g. in image generation [4; 5].
However, there is no universal solution for assessing whether the multidimensional features that the
model is sampling contain the same correlations between the different features as the true model.
Attention-based aggregation methods have displayed competitive performance for a wide array
of problems. The inclusion of a mechanism in the proposed model was motivated by this factor.
However, the quadratic scaling of self-attention with the number of inputs does not allow direct
application to large point clouds. Thus, our information aggregation relies on cross-attention to an
artificial mean-field, resulting in a linear scaling of computational complexity. The performance is
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first evaluated on the JETNET150 [6] top-quark dataset, which comprises of PYTHIA simulated
particles [7], clustered to jets using the anti-kT algorithm [8]. While PYTHIA jet generation is not the
main computational bottleneck that needs resolution, there are known complex high-level analytical
correlations (e.g. the relative invariant jet mass) which are difficult to capture. The metrics discussed
in [9] also allow for convenient benchmarking with other models from the field. Subsequently, the
application of the same model to calorimeter simulation is explored on the CaloChallenge Dataset
2 [10]. The calorimeter energy deposits are first converted to point clouds to make use of the sparsity
which is present. Although this requires extra positional coordinates of the hits, this efficiently
represents the data by excluding empty cells.

2 Related Work

2.1 JETNET150

The JETNET150 datasets, introduced by Kansal et al. [6], contain five datasets of about 180,000
samples each. For the sake of brevity, we will only discuss the dataset containing jets initiated by top
quarks. However, it is anticipated that the latter contains the most intricate substructure among all the
available jet datasets. For further clarification, information regarding particle features and high-level
correlations, such as the invariant mass of the jet, can be found in [6]. Key metrics, Wasserstein
distances, Frechet Physics Distance (FPD) and Kernel Physics Distance (KPD), are employed as
defined in [9]. Multiple models [11; 12; 13; 14; 15; 16; 9] exhibit noteworthy performance on these
datasets. We compare our model to EPiC-GAN by Buhmann et al. [16] as it is the only model that
scales up to the JETNET150 dataset [17] using only particle multiplicity as a condition, and no other
jet observables as input to the generator.

2.2 CaloChallenge

The CaloChallenge dataset contains calorimeter showers simulated by GEANT4 [18],paired together
with the energy of the incoming particle. To transform these to point clouds, the voxel index is used
as a coordinate. The spatial location is dequantised by adding noise distributed as p(x) = (n2−n1)

n1+n2
·x,

where n2, n1 are the total number of hits in neighbouring bins in the training set and x ∼ U([0, 1]).
Other models have been proposed for these datasets [19; 20], but their adaptability to non-idealised
detectors with non-regular geometry remains uncertain. Due to the unavailability of general metrics
that allow meaningful comparison, the primary focus will be on presenting and briefly discussing our
results. On this dataset there are on average ∼ 1600 hits, with a maximum of up to ∼ 4000 hits per
shower, and a total of 6480 cells, scaling up the number of points to generate in a cloud by a factor of
up to ∼ 30.
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3 Architecture

Figure 1: Minimal building block in the
architecture comprises point-wise fully
connected layers, c are the variables that
are used for conditioning using a gated
linear unit, LN is a layer norm and FC
stands for a fully-connected layer which
is applied to the mean-field. The cross-
attention layer is the sole means of inter-
action between different points.

The model consists of a generator and a critic in a GAN
setup. Both generator and critic accept a variable number
of points as input and are built to be equivariant respective
invariant under permutation of the input, as architectures
that respect the underlying symmetries are a good treat-
ment for the curse of dimensionality when optimising a
function over a high-dimensional space [21]. To aggregate
information, a mean-field is introduced and initialized as
the mean of all points. The interaction of all particles
with each other is approximated by the interaction with
this mean-field point only, allowing for scalability to large
point clouds. The mean-field aggregates information via
cross-attention to the points. The attention-based aggrega-
tion enables the critic and generator to dynamically select
important points and disregard unimportant ones1 The min-
imal building block for the generator as well as the critic
is depicted in Figure 1. Multiple such blocks are stacked
to build the main body of the architecture. Prior to the first
block, a point-wise linear map is applied, mapping them to
an l-dimensional latent space, in which further operations
take place. The difference between the generator and the
critic lies in the final layers of the architecture.
For the critic, a fully-connected neural network with one
hidden layer is applied to the final mean-field to yield the
score of the given input, whereas the generator maps the
points down to the input dimension with a single point-
wise layer. Different methods of transferring information
from the mean-field to the points were experimented with.
The simplest technique is adding the mean-field to all other
points. While this approach works to a certain extent, is-
sues arise as this aligns all points with the mean-field
making the calculation of the dot product attention prob-
lematic. A point-wise layer, that takes the points and the mean-field as input, comes at the cost
of introducing more parameters, but its introduction is necessary for a competitive performance.
Supplying the number of points in a shower explicitly to the model is crucial for the performance
of the generator and critic. The model is implicitly conditioned on the number of points in a cloud
n by choosing the dimension of the input noise as n × f (where f are the number of features per
point). But since attention is a weighted sum, where the weights add up to unity, the mean-field is
by construction agnostic to the number of elements during information exchange. To condition the
showers with the incoming energy for the CaloChallenge dataset, a gated linear unit is utilised in the
generator and critic.

3.1 Training and Evaluation

For the JETNET150 dataset, we found that the LSGAN [22] training performs best, while the
Wasserstein GAN together with gradient penalty [23] performs best for the CaloChallenge dataset.
Optimization of the network is done using Adam [24] with momentum set to zero. The learning
rate is varied with Cosine Annealing after a linear warmup to 10−4, which is commonly used with
attention-based models [25]. The critic for the CaloChallenge uses spectral normalisation [26]2,
while the one for JETNET150 uses weight normalisation [28].

1Note that although attention is more commonly known from sequential NLP tasks, it is actually a permutation
equivariant operation. It is therefore well suited to unordered sets such as point clouds.

2Note that this is done to enforce the Lipschitz constraint - however, it is shown in [27] that the usual
dot-product attention is not Lipschitz and they propose an L2-based attention, which is also applied in this work.
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Figure 2: Comparison between the JETNET150 dataset and generated samples. The first 3 plots
shows the distribution of the marginal features (ηrel, ϕrel, prelT ) of all particles. The plot on the right
depicts the relative invariant jet mass which provides a difficult to model high-level correlation. A
ratio between the generated data and the ground truth is shown below every plot.

3.1.1 Deep Mean-field Matching

To stabilise the generator training, we introduce a deep mean-field matching loss. In this approach
the generator additionally optimizes the mean-squared error between the mean-field in the last layer
of the critic for real and fake inputs. A similar loss is proposed by Goodfellow et al. [29], but they
propose to minimize the squared difference of the mean. We found that this generally stabilises
the training, however, the loss sometimes diverges later during training. Consequently, we limit the
application of this loss for 50, 000 gradient steps.

4 Results & Discussion

In the following we summarize the most important aspects of the model, which we refer to as
Matching Deep Mean-field Attentive (MDMA) GAN.

4.1 JETNET150

During evaluation a kernel density estimate (KDE) is sampled to provide the condition of the number
particles in a jet. The KDE is fit to the particle multiplicity distribution present in the training set. In
Table 1, the results are compared to the ones for EPiC-GAN. The in-sample metrics (IN) calculated
between the training and testing sets are given for reference as well. To obtain the results from EPiC-
GAN, the checkpoint provided in their repository was used. The MDMA-GAN model outperforms
EPiC-GAN on every metric, albeit our generator/critic only has 111 000/55 100 parameters which is
about a quarter compared to EPiC-GAN. Figure 2 depicts the marginal distributions and the relative
invariant jet mass distribution for the true and generated data.

Table 1: Comparison between the model from Ref. [16] (EPiC) and our model (MDMA) on the
top-quark dataset. Bold font has been used to indicate scores where one model performs significantly
better. The in-sample distance between the training and testing sample (IN) is also given for reference.
Our model performs better on all metrics that were evaluated. The uncertainty on the metrics is given
as the standard distance by bootstrapping the distances five times with a sample size of 50′000.

Jet Class Model WM
1 (×103) WP

1 (×103) WEFP
1 (×105) KPD(×104) FPD(×104)

Top Quark
MDMA 0.4± 0.1 2.5± 0.1 2.0± 0.3 −0.08± 0.07 3.0± 0.4

EPiC 0.60± 0.07 3.79± 0.09 2.9± 0.3 2± 1 23± 1

IN 0.3± 0.1 0.32± 0.09 1.0± 0.3 −0.1± 0.1 0.2± 0.2

4.2 CaloChallenge

Similarly, as for the JETNET150 dataset, the marginal distributions of all hits are shown in Figure 3.
Since ultimately the voxel-based representation of the data is needed, the shown results need to be
considered with caution. When remapping the points to the voxel structure, multiple generated hits
are often mapped back to the same cell as they are too close, which highlights a clear limitation of
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Figure 3: Distribution of the energy and position for MC simulated showers from the CaloChallenge
dataset and for the ML generated showers.
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Figure 4: Limitation of point-cloud-based model: When transforming back to the voxel-based
representation, numerous hits get mapped to the same cell leading to an incorrect distribution of the
number of hits per shower.

the model. This occurs predictably often for clouds containing a high number of points, as can be
seen in Figure 4.

5 Conclusion

We presented and evaluated a generative model for point clouds on two datasets. The model scales
linearly with the number of points/tokens, thanks to the use of cross-attention to an artificial mean-
field. To ensure stable adversarial training, the generator minimizes an L2 loss between mean-fields
deep in the critic and the mean-fields from ground truth data. On the JETNET150 top-quark dataset,
the proposed model exhibits state-of-the-art performance using significantly fewer parameters than
another state-of-the-art model with similar performance.
Differences between in-sample distances and generated samples are nevertheless still observed.
Furthermore, the model is deployed on the CaloChallenge dataset 2 where the point clouds yield up
to ∼ 30 more points to simulate. However, in this setting the model seems to be unable to model the
spatial distribution of points correctly. It remains to be studied whether scaling up the model in terms
of model size and amount of training data used resolves these remaining difficulties.
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