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Abstract

Understanding and characterizing the emergent behavior of systems with numerous
interacting components is typically difficult. This is especially the case when these
interactions occur on an inhomogeneous graph, a situation relevant to many systems
in bio- and statistical physics. Here we showcase a data driven approach, aimed at
optimally compressing the system’s information based on an information-theoretic
principle. We develop an efficient numerical algorithm applicable to systems on
arbitrary static graphs which employs variational estimators of mutual information
to find optimal compression. We demonstrate that the optimal compression maps
interpretably extract physically relevant local degrees of freedom. This enables us
to construct an effective theory of a strongly correlated system on a quasicrystal.

1 Introduction

Data from experiments and simulations are critical to the study of complex systems. A glut of raw
data does not, however, equate understanding, particularly when its processing easily exceeds our
computational resources. The aim of physicists is to distill data into a concise theory using appropriate
collective variables which capture the essence of the system. Renormalization group (RG) approaches
provide a systematic path towards that goal [32, 16], but identifying the relevant degrees of freedom
(DOFs) and deriving their effective theory [23, 13] is challenging in inhomogeneous systems, which
are ubiquitous in biology [5, 1, 4] and in physics of disordered materials[3, 27].

Here we address this by framing the RG for inhomogeneous systems as a lossy compression of
information on a graph [29, 10], enabling a geometry-independent approach. We use contrastive
learning [2, 26, 31] to execute our approach in high-dimensional data inherent in such problems. Our
algorithm explicitly constructs new effective DOFs Hi summarizing the configurations of the original
DOFs on local subgraphs Vi. This is achieved by a coarse graining transformation Λi : Vi 7→ Hi
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locally chosen in region i to maximise the real-space mutual information (RSMI) [7, 20, 18]

Λi = argmax I(Hi : E i), (1)

where the environment E i is defined using the graph distance. This objective is the basis of the real-
space mutual information neural estimation (RSMI-NE) algorithm [7]. The compression constraint
can be enforced by limiting the information capacity of Hi using a predetermined number of encoding
bits, thereby providing an approximation to the information bottleneck problem (IB) [10].

The variational principle in Eq. 1 provides a powerful substitute for intuition: effective DOFs are
locally determined by the statistics of their individual environments. This is essential for moving
beyond translation invariant systems. While coarse graining using Λi erases microscopic fluctuations,
its local optimisation can extract distinct large scale properties, as reflected in differing cardinalities
of compressed variables Hi that emerge in different spatial regions across an inhomogeneous system.
The main contribution of this paper is to extend RSMI-NE to extract the relevant collective variables
on arbitrary static graphs using this insight.

Identification of coarse-grained lattice is another challenge in RG on disordered systems [13]. We
show that the correct super-lattice can be revealed by analysing correlations of the compressed DOFs.
This provides an operational definition of data-driven coarse graining in inhomogeneous systems.

1.1 Related work

Figure 1: A microscopic dimer configuration
(black links) on the AB tiling’s edges, with
an overlaid AB super-lattice, self-similar to
the microscopic one. The effective DOF at a
super-vertex of a given (colour coded) valence
will be obtained by coarse graining the dimer
configuration in the surrounding region V of
a shape dictated by the inflation rules and
shown as a polygon of a matching colour.

Recently machine learning has inspired a number
of new RG approaches [21, 12]. The RSMI-NE
algorithm [7, 8] maximises a variational lower-
bound of mutual information using contrastive learn-
ing [2, 26, 31] to implement Eq. 1. Such estimators
have also been used to calculate entropies in physi-
cal systems [25], and quantum information theoretic
extensions have recently been proposed [28, 9, 19].
RSMI-NE algorithm has similarities with previous
approaches representation learning using mutual in-
formation maximisation [11] with the difference that
the former bounds the entropy of representations
from above. This compression sets an IB prob-
lem [30], whose connections to RG has been recently
exposed [10, 17], enabling the physical interpretabil-
ity of representations as relevant operators. Here we
extend the RSMI-NE algorithm to arbitrary static
graphs.

2 Real-space mutual information
based coarse graining on a graph

Consider a system of microscopic degrees of free-
dom X , distributed according to a joint probability
distribution P (X ). We define a coarse graining (CG)
map from X =

⋃
i Vi into a new set of compressed

variables X ′ =
⋃

i Hi as a conditional probability P (X ′|X ) =
∏

i PΛi(Hi|Vi). Each local factor
defines a distinct compression map Λi : Vi 7→ Hi. In our work, Vi can be configurations on any local
subgraph, e.g. given by topological balls on the graph, or another set dictated by the problem structure.
Refs. [20, 10] showed that extracting long-range physics (in the form of RG-relevant operators) in
translation-invariant systems can be cast as finding Λ maximizing a compression theoretic objective

IΛ(H : E) = E(H,E) [logP (H, E)− logP (H)P (E)] , (2)

where the environment E of V is spatially separated. We note that objective 2 is geometry-independent,
and can serve to define individual maps Λi for Vi on a graph. Furthermore, also the coarse-grained
graph topology can be determined by the correlations of the new variables Hi thus resolving the key
problems in constructing a well-defined coarse graining of DOFs interacting on an arbitrary graph.
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We parametrize the coarse graining PΛi(Hi|Vi) with an inner-product ansatz Hi
k := sign

(
Λi

kjVi
j

)
,

with linear NNs Λi = (Λi
k), though general NNs can also be used. The index k labels the components

of a coarse-grained variable, j refers to the spatial positions in patch Vi, where the indexing is defined
with respect to a fixed labelling of vertices in the graph. The sign function discretization provides a
compressive constraint. To allow for gradient-based training, it is smoothened using the Gumbel-
softmax reparametrization [24, 15], which is annealed during training.

The main idea in contrastive learning is to train a critic function that maximises the embedding
distance between similar and dissimilar samples. To estimate the mutual information using contrastive
learning, the outputs Hi of the networks Λi are combined with samples of DOFs in E i and fed to
a critic function f(Hi, E i), which is parametrised by a deep neural network. Intiutively, the critic
function learns to maximise the embedding distance between correlated pairs drawn from p(Hi, E i)
and uncorrelated sample pairs drawn from p(Hi)p(E i). The parameters of the deep critic network f
and the linear coarse graining network Λi are trained simultaneusly using stochastic gradient descent
to maximise a tight lower-bound of mutual information as in [21, 12].

3 Results: solving a statistical physics conjecture

To showcase our algorithm and the interpretability of its outputs we apply it to a dimer model on
a quasiperiodic Ammann-Beenker (AB) graph, conjectured to exhibit discrete scale invariance [6].
Dimer models are defined by configurations of binary variables on the edges obeying local constraints:
at each vertex, exactly one incident edge is occupied. AB graphs have a scale-invariant self-similar
structure under a scale transformation σ – the microscopic lattice and the self-similar superlattice
(with bold links) are shown in Fig. 1. Note the difference between trivial scale-invariance of the
graph, and that of the physical system on the graph. We generate dimer configurations, which are the
inputs, using Monte Carlo sampling [6].

To coarse grain we specify the spatial partition into Vi. In the AB tiling the hierarchical structure
gives a natural choice [14], spanned by four distinct classes of blocks [22], shown in Fig. 1, named
after the coordination of the corresponding vertices in the super-lattice. The variational compression
maps Λi assign to Monte Carlo dimer configurations in Vi a short binary code Hi (Fig. 2a), the bits
being set by applying individual components Λk to Vi (itself a long bit-string of dimer occupations
in the block). Code lengths are found by sequentially increasing the number of components in Λ and
re-training the compression to maximize objective 2 (Fig. 2b,f)

Optimal linear maps on the space of dimer configurations on Vi are shown for classes 8 and 3 in
Figs.2c and g. They reveal the emergent DOF to be Zn clock variable, with n the connectivity in
the superlattice. This is manifested in the code statistics: we first note that the 4-bit codes form a
closed 8-cycle, with neighbours differing by a single bit-flip, and each code having exactly two 1-bit
distant neighbours (Fig. 2e). The uniform frequencies and the cyclic structure of the code reveal
a symmetry. Indeed, a class-8 patch V of the AB lattice is locally symmetric under π/4 rotations.
We observe that under such rotations the components of the optimal Λ map (Fig. 2c) change as
C8 : (Λ1,Λ2,Λ3,Λ4) → (Λ4,−Λ3,−Λ1,−Λ2), which is a representation of a generator of the
cyclic group C8. In other words, th compression map, and consequently the emergent DOF, carry a
representation of what is a priori a (local) symmetry of the AB lattice.

Similar analysis can be performed for other classes of V , which have a mirror symmetry. In particular,
under its action for the class-3 patch in Fig. 2g we have (Λ1,Λ2) → (Λ2,Λ1), explaining equal
frequency of the 01 and 10 codes. Hence, we conclude that, rather than becoming continuous, the
emergent DOFs of the dimer system at larger scales remain discrete, and mimic the local symmetry
of the underlying super-lattice. This holds at even scales, as we demonstrate for σ2 and σ4 scale
transformations, providing the first explicit indication of invariance of dimer physics under discrete
scale transformations, or discrete scale invariance (DSI).

Having found the emergent DOFs in each class of Vi individually, we turn to their correlations. To
this end, we simultaneously coarse grain dimer configurations in multiple patches, which collectively
form an AB superlattice as in Fig. 1a We use the optimised compression maps (Fig. 2c,g). Since we
found that distribution of each state’s frequencies reflects the underlying superlattice symmetry, these
internal DOFs can be identified with spatial orientations along the superlattice edges. For example,
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Figure 2: (a) Coarse graining Λ maps Monte Carlo configurations on V into bit-strings H on
super-vertices of σ−2 deflated tiling. (b, f) Length of the bit-string H8(3) is determined by saturation
of mutual information at 4 (2) bits at 8 (3) super-vertices. The respective optimal filters Λ in (c, g)
carry a representation of the local C8 and mirror symmetries of corresponding super-vertices. (d, h)
The code statistics indicate H8(3)) are clock variables with 8(3)-states. (e) In particular, states of
H8 form a closed 8-loop, each state having exactly two neighbours with Hamming-distance 1. (i)
The local symmetries induce transitions between adjacent clock-states, enabling to identify abstract
clock-states with spatial directions along the links of the quasiperiodic lattice (see main text).

since mirror symmetry w.r.t. the axis connecting the 8- and 3-vertices in Fig. 2i relates the 3-vertex
codes 01 and 10 (Fig. 2h), the remaining state 11 is the one pointing towards the 8-vertex.

We then probe the correlations by conditioning on the state of one of the vertices. In Fig. 3, superlattice
fragments are shown with the state of the conditioning clock variable, identified with a direction, in
orange, while the conditional distribution of DOFs at the other vertices in grey-scale. Remarkably,
this distribution effectively forces occupation of some states, and excluding others. To wit, when the
3-vertex DOF points towards the 8-vertex, the distribution P (H|H3) of the latter is sharply peaked
in the matching direction, while no other neighbour of the 3-vertex points towards it (allowing, for
example, the identification of the 8-vertex code 1011 with a spatial orientation in Fig. 2i). Conversely,
when the 3-vertex DOF points towards one of its other neighbours, it is “matched" by the latter, while
the 8-vertex DOF distribution has zero weight only in the direction towards that 3-vertex.

Examining all correlations we find that the effective DOFs in Vi’s across the lattice are paired with
one and only one of their neighbours into emergent “super-dimers" on the edges of the superlattice.
The exclusion of certain clock variable orientations in Figs. 2a-e is a precise reflection of the defining
dimer-constraints, which these super-dimers obey. Moreover, comparison of further correlations to
those of the microscopic dimers in Fig. 3a reveals that not just the local dimer constraints, but also
longer-range correlations are reproduced. The physics of the microscopic dimer model on the AB
lattice is thus replicated at larger scales, allowing to explicitly confirm the DSI conjecture.

4 Conclusions

We have demonstrated that relevant collective DOFs and their effective theory can be extracted from
the structure of information inherent in raw high-dimensional data in a computationally efficient
and interpretable manner. This approach excels in systems with irregular geometry and has formal
connections to RG via the theory of lossy information compression. These characteristics are essential
in e.g. complex biological models of tissues [5, 1, 4], and in disordered materials [3, 27], and we
envisage the application of our tools in these domains.
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Figure 3: (a) Probability distribution of microscopic (i.e. σ0) dimer occupations (grey-scale) on an
AB graph patch, conditioned on one of the links (orange) hosting a dimer. (b, c) First two columns:
the probabilities P (H|H3) of the constructed emergent clock variables on the σ2 and σ4 superlattice
(in grey-scale), conditioned on two distinct states of one of the 3-clocks (in orange). The third
column shows distributions conditioned on a state of the central 8-clock. Sharply peaked conditional
distributions reveal binding of clocks into super-dimers at both σ2 and σ4 scales, and reproduction of
microscopic dimer correlations at higher scales. (d, e) One component of the coarse graining maps
for the 8-state clock variable at scales σ2 and σ4 (a structured function of 2760 local variables).
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