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Abstract

Recent studies have reported negative results when using heteroskedastic neural
regression models. In particular, for overparameterized models, the mean and
variance networks are powerful enough to either fit every single data point, or
to learn a constant prediction with an output variance exactly matching every
predicted residual, explaining the targets as pure noise. We study these difficulties
from the perspective of statistical physics and show that the observed instabilities
are not specific to any neural network architecture but are already present in a field
theory of an overparameterized conditional Gaussian likelihood model. Under light
assumptions, we derive a nonparametric free energy that can be solved numerically.
The resulting solutions show excellent qualitative agreement with empirical model
fits on real-world data and, in particular, prove the existence of phase transitions,
i.e., abrupt, qualitative differences in the behaviors of the regressors upon varying
the regularization strengths on the two networks. Our work provides a theoretical
explanation for the necessity to carefully regularize heteroskedastic regression
models. Moreover, the insights from our theory suggest a scheme for optimizing
this regularization which is quadratically more efficient than the naive approach.

1 Introduction

Regression and classification problems lie at the heart of deep learning (1; 2; 3). Heteroskedastic
regression models assume that the output noise may depend on the input features z, and try to learn a
conditional distribution p(y|z) with non-uniform variance. This allows the model to assign different
importances to training data and ultimately results in a model that “knows where it fails” (4; 5).
Learning overparameterized heteroskedastic regression models (e.g. with deep neural networks) has
proven to be difficult due to extreme forms of overfitting (6; 7) in the mean model, standard deviation
model, or both as shown in Fig. 1. While several practical solutions to learning overparameterized
heteroskedastic regression models have been proposed (4; 8; 9; 10), no comprehensive theoretical
study of the failure of these methods has been offered so far.

We provide a theoretical analysis of the failure of heteroskedastic regression models in the overpa-
rameterized limit. To this end, we borrow a tool that abstracts away from any details of the involved
neural network architectures: classical field theory from statistical mechanics (11; 12). Via our
field-theoretical description, we can recover the optimized heteroskedastic regressors as solutions to
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partial differential equations which can be solved numerically by optimizing the field theory’s free
energy functional.

2 A Field Theory for Overparameterized Heteroskedastic Regression

Heteroskedastic Regression Suppose we have a set of independent data points D := {(z;, y;)} Y,
with covariates z; € X C R% drawn from a distribution z; ~ p(x) and responses y; € Y = R

1
where y; ~ N (i, A; ). We assume to be in a heteroskedastic setting, in which A; need not equal
Aj fori # j. Flnally, we assume both the mean and standard deviation of y; to be explainable
via z;: y; | 2; ~ N (u(2;), A(z;)"2) fori = 1,..., N with continuous functions sz : X — R and
A . X — R>0.

Neural networks are well-known universal function approximators, which make them a reasonable

choice for estimating u, A (13). Let the mean network /iy : X — R and precision (inverse-variance)

network Ay : X — Ry be arbitrary depth, overparameterized feed-forward neural networks

parameterized by 6 and ¢ respectively. For a given input x;, these networks collectively represent a
. .. . . . A~ ~ N 1

corresponding predictive distribution for y;: p(y; | z) := N (yi; fio(xi), A (z:) " 2).

Pitfalls of MLE The maximum likelihood objective (MLE) in our setting is:

L(0,0) ~ — ZA¢ — fig(x))? — log Ag (). (1)

Given an infinitely flexible model, this objective function is ill-posed. The mean function /iy has no
regularization, so during training it can estimate y to arbitrary precision for at least one data point
(2, y;)- Then the residual corresponding, y; — fig(x;) — 0 and the regularization for A¢ vanishes, at
least at the point z;. If training reaches this point, the objective function becomes completely unstable
due to effectively containing a term whose limit naively yields co — co.

We posit that additional regularization on JAX¢, is required to avoid this instability. It can be tempting
to think that one must regularize 6 in order to avoid overfitting. And while this is generally true, the
objective function £ will still be unstable so long as at least one input x; yields a perfect prediction.
To prevent this from happening, we can include L, penalty terms for both 6 and ¢ in our loss function:

Lap(0,0) :=L(0,0)+ alb]]5 + Bl¢l[3 2

where «, 8 > 0 are penalty coefficients. As a@ — 0o, the network models a constant mean and as
B — oo we effectively model a homoskedastic regime. For computational reasons, we propose the
following one-to-one reparameterization of the regularization coefficients as:

Ly(0,0) = pL(0,¢) + (1 p) YOI + (1 = )l|¢l13] ©)

where p,~v € (0,1). Since p,y are bounded we are able to cover the space of regularization combina-
tions by searching over (0, 1) whereas in the «, § parameterization «, § € R~ are unbounded. Now,
p determines the relative importance between the likelihood and the total regularization imposed on
both networks and v weights the proportion of total regularization between the mean and precision
networks. Here, p = 1 corresponds to the MLE objective while p — 0 could be interpreted as
converging to the mode of the prior in a Bayesian setting. Fixing v = 1 leads to an unregularized
precision function while choosing v = 0 results in an unregularized mean function.

Description of Phases Model solutions across the p-y hyperparameter space exhibit different traits.
Similar to physical systems, this can be described as a collection of typical states or phases that make
up a phase diagram. Fig. 1 shows an example phase diagram along with model fits coming from
specific (p,~y) pairings. We argue that there are five primary regions of interest:

* Region U;: Both the mean and precision functions are heavily regularized. The mean and standard
deviation functions are fixed to the values they were initialized to.

» Region Uy: The mean function is heavily regularized and tends to be flat, as in Region U;. Despite
the constant mean function, the precision function still adapts to the data.



Figure 1: Visualization of a typical phase diagram in p-7y regularization space for a heteroskedastic
regression model shown on left. Solid and dotted lines indicate sharp and smooth transitions in model
behavior respectively. Example model mean fits shown in red (with pointwise + standard deviation
in orange) from the NFE for each key phase in middle and right plots.

* Region O;: Heavily overfit mean and the residuals and standard deviations essentially vanish.
Increasing p — 1 yields true MLE fits (seen on the right).

» Region Op: The mean function does not overfit due to regularization, leaving large residuals for
the lowly regularized precision function to overfit onto.

* Region S: The mean function and standard deviations adapt to the data without overfitting. We
conjecture that solutions in this region will provide the best generalization.

Nonparametric Modeling & Field Theory We propose abstracting away the neural networks fig
and A¢ and instead analyzing nonparametric, twice-differentiable functions /i and A respectively.
Since these functions are nonparametric, we can no longer use Lo penalties. A comparable substitute
is to directly penalize the output “complexity” of the models, or the cumulative absolute rate of

change: [ o||Vji(z)||3dx and [ B||VA(x)|/3dx. Note that these specific penalizations induce similar
limiting behaviors for resulting solutions (i.e., &, 3 — 0 implies overfitting while — oo implies
constant functions).

Field theories are non-parametric descriptions of the spatial (or spatiotemporal) configurations of
continuous physical systems (12). For example, the local magnetic field (magnetization) of a two or
three-dimensional magnetic material would be an example of a field. For time independent problems
we minimize a free energy functional: we will refer to it as nonparametric free energy (NFE). The
NFE depends on certain parameters, such as the strength of an external magnetic field or a temperature.
Upon smoothly varying these parameters, the most likely field configuration can undergo smooth
changes (‘“crossovers”) or abrupt changes (“phase transitions”). As follows, we outline a field-
theoretical treatment of the mean and variance parameters of our heteroskedastic regression model,
where the mean and variance show phase transitions upon varying their regularization strengths.

Using the assumptions outlined above, the cross-entropy objective can be interpreted as an action
functional of a corresponding two-dimensional NFE:

L0l ) = [ w0 [ 1) | 54000 (= ie)? ~ 0w Ao |y

+ (1= ) [IVA@)E + (1 = IIVA@)E] do. @)

The nested integral complicates matters so we consider the scenario in which the inner integral is
approximated using a single MC sample. Numerically, we can arrive at approximate solutions for a
given dataset. Analytically, we can gain insights into the solutions of the NFE by taking functional
derivatives with respect to i and A and setting them to zero. We find the following conditions must
be met for any set of solutions:
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Figure 2: Grid of various metrics (rows) evaluated on different data or fitting techniques (columns).
The left most column holds the results from the theoretical NFE; remaining columns show results on
test data from fitted neural networks. The ticks on the lower left plot mark v = 0.5 and p = 0.5.

where A is the Laplace operator (14). These equalities hold almost everywhere with respect to p(x).

NFE Insights Under the assumptions of our NFE, the following properties hold: (i) in the absence
of regularization (p = 1), there are no solutions to the NFE; (ii) in the absence of data (p = 0), there
is no unique solution to the NFE; and (iii) there are no valid solutions to the NFE if p € (0,1),vy = 1.
Should there be no mean regularization, then there needs to be at least some regularization for the
precision. Proofs for all of these results are deferred to the Appendix A.2. Importantly, these limiting
cases match our intuition for the solutions to the NFE (which were equivalent to the neural network
setting). Empirically, we have discovered that the phase diagram typically resembles Fig. 1.

3 Experiments

We analyze the effects of regularization on several one-dimensional simulated datasets and standard-
ized versions of the Concrete (15), Housing (16), Power (17), and Yacht (18) regression datasets from
the UCI Machine Learning Repository (19). We fit neural networks to the simulated and real-world
data and additionally solve our NFE for the simulated data. Detailed descriptions of the data, training
details, and complete results, are included in Appendix B.1, Appendix B.2, and Appendix B.4.

The Dirichlet energy, [, ||V f(x)||3 dx, captures how expressive a function is, with more expressive
functions yielding higher values. We also consider the mean squared error (MSE) between predicted

mean fig(z;) and target y;, as well as between predicted standard deviation (A—2 (z;)) and absolute
residual |fig(2;) — y;|. Low values indicate the mean and standard deviation fit the data well.

We present summaries of the fitted models in grids with p on the x-axis and v on the y-axis in Fig. 2.
The far right column (v = 1) corresponds to MLE solutions. The main focus is on qualitative traits of
fits under different levels of regularization and how they behave in a relative sense. Our metrics show
sharp phase transitions upon varying p, 7y, as in a physical system. The NFE insights and observed
phases are consistent with the NFE and results from fitting neural networks. Thus, our results are not
tied to a specific architecture or datasest. Finally, our phase diagrams suggest that we can search along
p =1 —~ to find a well-calibrated (p, v)-pair from region S. We discuss this further in Appendix
Appendix C.2.



4 Conclusion

We used field-theoretical tools from statistical physics to derive an NFE, which allowed us to produce
analytical insights into the pathologies of deep heteroskedastic regression. These insights generalize
across models and datasets and provide a theoretical explanation for the need for carefully tuned
regularization in these models, due to sharp phase transitions between pathological solutions. We also
presented a numerical approximation to this theory, which empirically agrees with neural network
solutions to synthetic and real-world data. Using insights from the theory, we have shown that we
can tune the required regularization for these models more efficiently than would naively be the case.
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A Theoretical Details

A.1 Full Functional Derivatives

Full functional derivatives of our NFE are:

Lol B~ [ 9| 3G (40) — i) - 10w )|

+ (1= p) [YIVA@IE+ (1 =) VA@)|3] da

3 = p(@)ph@)(ir) ~ y(x) —2(1 — P11 A() ©
%= [(ye) ~ ) - 55 - |

@)

A.2 Proofs

Proposition 1. Assuming there exists twice differentiable functions j : R* — R, A : R? — Ry, the
following properties hold

i In the absence of regularization (p = 1), there are no solutions to the NFE.
ii In the absence of data (p = 0), there is no unique solution to the NFE.

iii There are no valid solutions to the NFE if p € (0,1),v = 1. Some regularization on
precision function is needed for a solution to potentially exist.

Proof. Without loss of generality, we consider a uniform p(x) and drop it from the equations.

(i) When p = 1 the necessary conditions for an optima are

A% (2)(A7 (2) —y(x) =0 ®
(3 (@) — y(@))? = 1=
A (@) (7 (@) — y(a)) = 0
. 9

— {A*(x)(ﬂ*(x) @) =1 ©
A (@) (5 (2) — y(a)) = 0 0

= {0 oty 1o

=0=1 (11)

which is a contradiction and there cannot exist y, A that are solutions.
(ii) When p = 0 the integral we seek to maximize is:
. 1 1 P
Lo )= [ o [ plwlo) [2A<x> (y— @)’ - 5 log A<x>] dy
X Yy
+ (1= p) [UIVAE)IE + (1 = ) VA() 3] dz (12)
- /X [IVA@)B + (1= IVA@)E] de. (13)

Each term in this integral is non-negative, so the minimum value it could be is zero. Any pair
of constant functions p, A will minimize this integral, of which there are infinitely many.



(iii) We return to the «a, 3-parameterization for this proof. Suppose there is no mean regulariza-
tion, that is o = 0.

(7 () — y())? A (x) 19

From the first condition we see that there must be perfect matching between (i* and y since
A* > 0 in order to define a valid normal distribution.

_ {A*(x)(ﬂ*(x)—y( z)) =0

(4 ()~ y(x) = 0
:ﬁ{(<> y(@))? = A () (1

(&) () =0
(16)

= (st
Now, note that as 8 — 0,

:?{gjm;y@»=o -

T i@

but A* € R, so the second condition can never be satisfied. Thus, in order for a solution to
existif« =0 = [ > 0. These «, 3 values correspond to p € (0,1),~ # 1.

O

This proposition implies the existence, or rather the lack thereof of solutions to the NFE. Should
there be no mean regularization, then there needs to be at least some present for the precision. The
theory potentially suggests that the vice versa of this should also guarantee valid solutions (i.e., « > 0
and 8 = 0); however, in practice this does not hold true. The reason lies in the stipulation that

y(x) # ie) ae

Typically, this condition can be satisfied while still allowing for countably many values of x in
which y(z) = [i(x). The problem is that we fit models using a finite amount of data. As mentioned
previously, we typically minimize the objective function by approximating it using a MC estimate
with D as samples. An alternative perspective of this decision is that we are actually calculating
the expected values exactly with respect to an empirical distribution imposed by D: p(z,y) :x
> (s yyen 0|z — zil[)0(y — ;) where 6(-) is the Dirac delta function.! Because of this, a single
value of x can possess non-zero measure, thus it only takes a single instance of y(x) = fi(x) for the
statement y(x) # [i(x) a.e. to be false. This, unfortunately, is very likely to happen while solving for

fi, . Thus, we can conclude that no matter what, (1;13”) (1 — ) > 0 for a valid solution to be
guaranteed to exist.

B Experimental Details

B.1 Datasets

We chose 64 datapoints in each of the simulated datasets. The generating processes for each simulated
dataset is included in Table 1 and can be seen in Fig. 3. The homoskedastic data is simulated in the
same way, but with f(x) = 1. For testing, we simulate a new dataset of 64 datapoints with the same
process. Table 2 summarizes the UCI datasets.

B.2 Training Details

We take 22 values of «,p that range from 107! wup to 1 — 1075 (p,y €
{0.9999, 0.999, 0.99,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0.01, 0.001, 0.0001, 0.00001,
0.000001, 0.0000001, 0.00000001, 0.000000001, 0.0000000001, 0.00000000001 })

'Not to be confused with the functional derivative operator 4.



Figure 3: Visualization of heteroskedastic and homoskedastic versions of simulated datasets. Specific
details for the functional form of these can be found in Table 1.

Table 1: Simulated datasets. Each dataset is defined by a true p function and then a noise function f.
All data is generated as pi(z) + €(x) where e(x) ~ N(0, f(x)?). After the datasets were generated
they were scaled to have mean zero and standard deviation one. The homoskedastic versions of each
dataset fix f(x) = 1. The datasets are shown in Fig. 3.

Dataset Mean (i) Noise Pattern (f) Domain
Sine pu(x) = 2sin(4nx) f(z) = sin(6mz) 4+ 1.25 z €10,1]
0.1 forz < —-0.5

1 forz €[-0.5,0.0)

. _ .3 _ _
Cubic — p(w) == @ =33 forzefo0s *ECL
10 forx > .5
Curve wx) =z —222 +052° f(z)=2+15 x € [-1.5,1.5]

Table 2: UCI dataset.

Dataset ~ Train Size Test Size Input Dimension

Concrete 687 343 8
Housing 337 168 13
Power 6379 3189 4
Yacht 204 102




on a logit scale for all of the experiments run on neural networks. For
the NFEs we take 20 values from 107 up to 1 — 1077 (p,v €
{0.999999, 0.99999, 0.99999, 0.9999, 0.999, 0.99,0.9,0.8,0.7, 0.6, 0.5,0.4,0.3,0.2,0.1, 0.01,
0.001,0.0001, 0.00001, 0.000001}), also on a logit scale. This scaling increases the absolute density
of points evaluated near the extreme cases of 0 and 1 where the theoretical analysis of the NFE
focused. The ranges differ slightly due to numerical stability during the fitting. The limiting cases of
v, p € {0,1} were omitted for numerical stability and the ranges of values for the NFEs vs neural
networks vary slightly for the same reason. All experiments were run on Nvidia Quadro RTX 8000
GPUs. Approximately 400 total GPU hours were used across all experiments.

B.3 NFE

For the discretized field theory we take ny, = 4096 evenly spaced points on the interval [—1, 1].
There are two datapoints placed beyond [—1, 1] because the method we use to estimate the gradi-
ents requires the datapoints to have left and right neighbors. These datapoints were not included
when computing our metrics. Of these 4096 datapoints 64 were randomly selected to be used
for training neural networks figp, Ag. The field theory results were consistent across choices of
nge € {256,512,1024,2048,4096}. We present results for ny; = 4096 in the main paper. We
train for 100000 epochs and use the Adam optimizer with a basic triangular cycle that scales initial
amplitude by half each cycle on the learning rate. The minimum and maximum learning rates were
0.0005 and 0.01. The cycles were 5000 epochs long. We clip the gradients at 1000.

B.4 Simulated Data with Neural Networks

For all of the simulated datasets except for sine we train for 600000 epochs and use the Adam
optimizer with a basic triangular cycle that scales initial amplitude by half each cycle on the learning
rate. The minimum and maximum learning rates were 0.0001 and 0.01. The cycles were 50000
epochs. The first 250000 epochs are only spend on training fig while the remaining 350000 epochs
are spent training both fig, f\¢. We clip the gradients at 1000. The training for the sine dataset was
the same, except trained for 2500000 epochs.

B.5 UCI Data with Neural Networks

For the concrete, housing and yacht datasets we train for 500000 epochs and use the Adam optimizer
with a basic triangular cycle that scales initial amplitude by half each cycle on the learning rate. The
minimum and maximum learning rates were 0.0001 and 0.01. The cycles were 50000 epochs. The
first 250000 epochs are only spend on training fig while the remaining 250000 epochs are spent
training both jig, Ay. Meanwhile on the power dataset, we had to use minibatching due to the size of
the dataset. We used minibatches of 1000 and trained for 50000 total epochs with the first 25000
dedicated solely to jig and the remainder training both fig, A4. The same cyclic learning rate was
used but with cycle length 5000. We clip the gradients at 1000.

C Additional Results

C.1 All Synthetic Dataset Results

Both NFE and neural networks were fit to the heteroskedastic and homoskedastic synthetic datasets
described in Table 1. The main results for these displayed as phase diagrams of various metrics can
be seen in Fig. 4 and Fig. 5 respectively. We largely see the same trends as were exhibited by the
real-world datasets seen in Fig. 2.

C.2 Diagonal Hyperparameter Search

We perform a search along the p = 1 — v minor diagonal in the phase diagrams. Fig. 6 shows the
summary statistics along the slice where p = 1 — ~. After conducting our diagonal search we found
the model that minimized p MSE and the model that minimized A== MSE on the training data. In
some cases these models coincided. We then used the model that was on the midpoint (on a logit
scale) of the p + v = 1 line between these two models to compare against baselines from (9) and
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Figure 4: Same configuration as Fig. 2, except all results here pertain to minimizing the NFE on six
different synthetic datasets described in Table 1. Dataset names with an * are the homoskedastic
counterparts.
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Figure 5: Same configuration as Fig. 2 and Fig. 4, except all results here pertain to training a neural
network on six different synthetic datasets described in Table 1. Dataset names with an * are the
homoskedastic counterparts.
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Figure 6: Test metrics for six different settings achieved with varying values of p € (0, 1) and with ~y
restricted to be equal to 1 — p. Stars indicate minimum MSE values. All metrics are reported on a
log,, scale. p values are shown on a logit scale with 10 := 1 — 10*. From left to right, note the
sharp decrease in test metric values, especially in the solutions to neural network models followed by
a typical smoother increase. This empirically supports the existence of the well-calibrated S phase
shown in Fig. 1 and allows for hyperparameter optimization in O(N ) instead of O(N?).

(6). The results are reported in Table 3. In all cases our method is competitive with or exceeds the
performance of these two baselines—particularly on real-world data.
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Table 3: Comparison of our method against two baselines. We report the average and standard
deviations of expected calibration error (ECE), i MSE and A2 on test data. Lowest mean value for

each metric is bolded.

Dataset Ours B-NLL (9) MLE Ensemble (6)
Metric
Cubic
1 MSE 0.2339 + 0.01 0.1500 + 0.01 1.1809 + 1.88
A—2MSE  0.2397 +0.02 0.1397 + 0.01 inf + nan
Curve
1 MSE 0.4318 + 0.12 0.4877 +0.16 1.0067 +0.19
A—2MSE  0.4655 + 0.09 0.4187 + 0.20 inf + nan
Sine
1 MSE 0.7968 + 0.00 4.4107 + 6.90 0.9716 + 0.06
A=>MSE  0.7968 + 0.00 43524 + 6.89 inf + nan
Concrete
1 MSE 0.1055 + 0.02 14.9882 + 28.75 22454 + 1.74
A=3MSE 0.3028+0.51 1.3x10°+2.7x10° 1.3x10°+1.2 x 10°
Housing
1 MSE 1.2236 £0.00  851.8968 + 1985.56 155.4494 + 128.27
A=:MSE 0.7610 +0.00  851.8959 + 1985.56 218.8269 + 195.38
Power
1 MSE 0.0350 + 0.01 0.0313 +0.01 0.0177 + 0.00
A~3MSE  0.0343 +0.01 0.0360 + 0.01 0.0091 + 0.00
Yacht
1 MSE 0.0077 + 0.01 34.1239 + 194.87 6.2670 + 13.96
A=3MSE  0.0076 = 0.01 34.1237 + 194.87 8.0599 + 19.18
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