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Abstract

Generative machine learning can be used to augment and speed-up traditional
physics simulations, i.e. the simulation of elementary particles in the detector
of collider experiments. Like many physics data, these calorimeter showers can
either be represented as images or as permutation-invariant lists of measurements,
i.e. as point clouds. We advance the generative models for calorimeter showers
on three frontiers: (1) increasing the number of conditional features for precise
energy- and angle-wise generation with the bounded bottleneck auto-encoder
(BIB-AE), (2) improving generation fidelity using a normalizing flow model,
dubbed “Layer-to-Layer-Flows” (L2LFLOWS), (3) developing a diffusion model
for geometry-independent calorimeter point cloud scalable to O(1000) points,
called CALOCLOUDS, and distilling it into a consistency model for fast single-shot
sampling.

1 Introduction

Accurate simulations of physics processes are a crucial way to compare theoretical predictions with
experimental results. In high-energy physics (HEP) current and future collider experiments are
taking data at ever increasing rates [1, 2], while the computing budget for simulations is projected
to stagnate [3, 4]. Generative machine learning can be utilized to augment and speed-up traditional
physics simulations with a surrogate model leveraging recent advances in generative modelling and
GPU acceleration. In various other physical sciences, such generative models are also used for e.g.
generating astrophysical fields [5], molecular docking in drug design [6], and simulating inertial
confinement fusion [7].

In high-energy physics considerable efforts are undertaken to develop generative models for detector
simulations, such as the sensor responses to incident particles in calorimeters. These incident
particles deposit energy in the calorimeter and create secondary particles leading to a measured event
dubbed a calorimeter shower. Various generative modelling techniques are being explore to simulate
these showers, including generative adversarial networks (GANs) [8–19], autoencoders [20–25],
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normalizing flows [26–33], and diffusion models [34–39]. The models are conditional generative
models allowing for the targeted sampling of e.g. a specific particle energy.

The read-out sensors in calorimeters are often aligned on a (close-to) 3d grid allowing the data to
be represented as 3d images with the pixel value corresponding to the measured energy. Virtually
all previously used generative models used this structured image representation. However, for many
events, only a small fraction of the sensors record an energy deposition, leaving many pixels empty.
Such sparse images can be more efficiently represented as a point cloud with the 3d position and the
energy as features. Some very recent models explore this more efficient point cloud representation to
generate calorimeter showers [29, 35, 36, 39].

In our case-studies, we generate photon showers in the highly-granular eletromagnetic calorime-
ter (ECAL) with 30 active layers of the envisioned International Large Detector (ILD) [40].
The training datasets are simulated with GEANT4 [41], the baseline for all our comparisons.

Figure 1: Overview of the BIB-AE architecture during training, in-
cluding each network and its corresponding loss terms. The red, blue
and lilac lines represent an input conditioning on visible energy, the
incident energy, and angle of the incident particle, repectively. Figure
taken from Ref. [25].

Here, we give an overview
of our most recent research
in advancing generative
models on three major fron-
tiers: In Sec. 2 we explore
an autoencoder conditioned
on multiple shower observ-
ables allowing for a more
targeted sampling, in Sec. 3
we outline a flow-based
generative model achieving
state-of-the-art generative
fidelity, and in Sec 4 we de-
scribe our diffusion-based
model for large geometry-
independent calorimeter
point cloud generation.

2 Conditional Flexibility: BIB-AE

Figure 2: Left: Angular response for both GEANT4
(filled histograms), and BIB-AE generated photon show-
ers (dashed, unfilled histograms) for 50 GeV photons
and variable angles. Right: Total visible energy for
60 degree showers at various incident energies. Figures
taken from Ref. [25]

The bounded information bottleneck au-
toencoder (BIB-AE) has previously been
used to generate high fidelity photon
and charged pion showers [20–22]. The
BIB-AE model combines multiple sub-
models including a variational autoencoder
(VAE) [42], two Wasserstein-GAN crit-
ics [43, 44], and a post-processor network.
The sub-models consist of fully connected
and convolution neural network (CNN) lay-
ers. While past iterations of the BIB-AE
were only conditioned on the particle inci-
dent energy and the data used had a fixed
incident angle, we expand the condition-
ing regime to also include a variable angle
in the y − z plane as well as the visible
energy. To train on various energies and an-
gles, the training dataset was created with
a uniform energy distribution between 10
and 100 GeV and an angular distribution
between 90 and 30 degrees. We consider a

small section of the ECAL and represent the shower as a 30× 60× 30 image. A model schema is
shown in Fig. 1.

In Fig. 2 we compare the generative performance of the BIB-AE to the GEANT4 simulation. In the
left figure, we sample single energy photon showers at exactly 50 GeV for the specific angles 40,
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Figure 3: BIB-AE–generated shower (left), GEANT4 test shower (middle) and L2LFLOWS-generated
shower (right). The black arrow indicate the fixed incident angle of the incoming photon. Figures
taken from Ref. [31].

60, and 85 degrees. We show the distribution of the shower angle defined by the principle axis of a
principle component analysis (PCA). In the right figure, we fix the angle at 60 degrees and sample
for the energies 20, 50, and 90 GeV and show the visible energy (the sum of all pixels over a certain
threshold). We see that for all fixed angle and energy combinations, the generated showers agree
well with GEANT4. A more detailed analysis of the physics performance can be found in Ref. [25].
We conclude that the BIB-AE model is able to produce high fidelity conditional samples. Further
conditioning, i.e. on the x− z angle, is under investigation.

3 Generative Fidelity: L2LFlows

Normalizing flows (NFs) are achieving state-of-the-art generative fidelity on low- and high-granular
calorimeter showers [26–33]. We have advanced the previously introduced CaloFlow model [27, 28,
30] — originally introduced for a three layer calorimeter — and applied it to higher granular photon
showers represented as 30× 10× 10 voxelized images. For these photon showers a uniform incident
energy distribution, but fixed angle is used. This “Layer-to-Layer-Flows” (L2LFLOWS) model uses a
two-step strategy for shower generation: First, we use a lightweight NF to generated the total visible
energy in each calorimeter layer. Second, 30 separate NFs are trained with each NF generating the
shower response in one specific layer. Each of these NFs is conditioned on the voxel energies and
the total energies of the preceding five layers — with an intermediate embedding network to reduce
the conditioning dimensionality. This split into 30 NFs is done to keep the memory consumption of
L2LFLOWS in check since the masked autoregressive flows (MAFs) [45] used compute the Jacobian
determinant efficiently, but scale with the input dimensionality. Overall L2LFLOWS is conditioned
on the incident particle energy.
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Figure 4: Left: Distribution of voxel energies with shower incident
energies uniformly distributed between 10 and 100 GeV. Right: Num-
ber of voxels above threshold for single energy 20, 50, and 80 GeV
photons. Figures taken from Ref. [31].

We compare the
L2LFLOWS generated
showers to BIB-AE gen-
erated showers and the
GEANT4 “truth”. Fig. 3
shows a 3d image visual-
isation of single 50 GeV
showers. Empty voxels are
the result of a low energy
cut at 10−4 GeV since
below this threshold the
sensor response is indistin-
guishable from noise. Both
generated showers align
visually with the GEANT4
shower. Figure 4 shows the
voxel energy distibution for
the full 10-100 GeV incident energy spectrum (left) and for single energy showers the number of
non-zero voxels (hits above the threshold) (right). Overall both models agree well with GEANT4, but
L2LFLOWS achieves higher generative fidelity than the BIB-AE. Further details can be found in
Ref. [31].
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4 Scalability & Speed: CaloClouds
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Figure 5: Left: Histogram of the cell energies. Right: Num-
ber of hits distributions for single energies at 10, 50, and
90 GeV. The bottom panel provides the ratio to GEANT4.
Figures taken from Ref. [39].

CALOCLOUDS [35] is the first model
introduced for calorimeter showers
as high-cardinality point clouds with
O(1000) points. It consists of mul-
tiple sub-models, including two NFs
(one for conditioning and calibrating
shower observables, one for the la-
tent space), an encoder (based on
equivariant point cloud (EPIC) lay-
ers [46]), and a diffusion model based
on Refs. [47, 48] using 100 denosing
steps. We further introduce the en-
hanced CALOCLOUDS II model [39],
which drops the latent NF and encoder
and implements the advanced diffu-
sion regime of Ref. [49], allowing
for sampling with 25 model passes.
Finally, we distill this model into
CALOCLOUDS II (CM), a consis-
tency model (CM) [50] allowing for
single shot generation without loss in
fidelity. The diffusion model architecture uses weight sharing among all points, hence it samples all
points independently and identically distributed (i.i.d.) with respect to the global conditioning. Due to
the computational efficiency of CALOCLOUDS and the linear scaling of the computing cost with the
point cloud size, the models can be applied to point clouds with a higher granularity than the actual
physical sensors. This way, the models become largely cell geometry-independent, and showers can
be projected into any part of the detector (except changing its depth) with minimal artifacts. We
generated such a dataset with GEANT4 using photon showers with energies between 10 and 90 GeV.
The dataset contains point clouds with up to 6,000 points per shower — noticeably higher than the
number of cell hits (< 1, 500).

Table 1: Comparison of the computational perfor-
mance of CALOCLOUDS, CALOCLOUDS II, and CALO-
CLOUDS II (CM) to the baseline GEANT4 simulator on
a single CPU core. The number of function evaluations
(NFE) indicate the number of diffusion model passes.
Table adapted from Ref. [39].

Simulator NFE Time / Shower [ms] Speed-up

GEANT4 3914.80 ± 74.09 ×1

CALOCLOUDS 100 3146.71 ± 31.66 ×1.2
CALOCLOUDS II 25 651.68 ± 4.21 ×6.0
CALOCLOUDS II (CM) 1 84.35 ± 0.22 ×46

We compare the generative fidelity of the
CALOCLOUDS variants to GEANT4 with
various cell-level and shower-level observ-
ables after projecting the point cloud to the
real ILD ECAL geometry with 30 layers
each containing 30×30 cells. Fig. 5 shows
the cell energy distribution for the full en-
ergy spectrum and the number of hits (non-
zero cells) for single energy showers. Over-
all, both CALOCLOUDS II models improve
upon CALOCLOUDS and reach a high fi-
delity compared to GEANT4.

In Tab. 1 we benchmark the speed-up of the
CALOCLOUDS models over the GEANT4
simulation. For a fair comparison the per-
formance is compared on the same single CPU core, as GEANT4 does not support GPUs, and CPUs
are cheaper and more widely available. Using consistency distillation, the CALOCLOUDS II (CM)
model is able to generate photon showers 46× faster than GEANT4. A comparison to the BIB-AE
and L2LFLOWS models is not performed as the data structures are too different to allow for a fair
compairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39].

5 Conclusion

We have shown recent advances on three different frontiers in the generative modelling of calorimeter
showers. Eventually we envision a model that combines all three: flexible conditional sampling,
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high fidelity, and computational efficiency. For the already established models, further fidelity and
timing studies with common benchmark metrics datasets with the same dimensionalities should
be performed. A valuable comparison is currently undertaken in form of the Fast Calorimeter
Challenge [51]. Beyond photon showers, we plan to explore the generative modelling of hadronic
showers, which are more challenging to model due to their more complex shower topology. For
CALOCLOUDS this will likely necessitate a more complex model architecture taking inter-point
correlations during sampling into account, e.g. by using linearly scalable EPiC layers [46] introduced
for particle jet modelling. Finally, ongoing efforts are made to include the generative models as a
drop-in replacement for parts the full GEANT4 simulation pipeline.
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