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Abstract

Optical neural networks (ONN5s) have the potential to overcome scaling limitations
of transistor-based systems due to their inherent low latency and large available
bandwidth. However, encoding the information directly in the physical properties
of light fields also imposes new computational constraints, for example the restric-
tion to only positive intensity values for incoherent photonic processors. In this
work, we address design and training challenges of physically constrained infor-
mation processing with a particular focus on activation functions in non-negative
neural networks (4Ns). Building on biological inspirations we revisit the concept
of inhibitory (decreasing) and excitatory (increasing) activation functions, explore
their effects experimentally and introduce a general approach for weight initial-
ization of non-negative neural networks. Our results indicate the importance of
both excitatory and inhibitory elements in activation functions in incoherent ONNs
which should be considered for future design of optical activation functions for
ONN:Ss. Code is available at https://nnnn. cvmls. org!

1 Introduction

Modern deep learning models require an ever-growing amount of computational resources [[17, [27].
Despite improved transistor technology [29,35]], physical constraints inevitably limit the scalability
of semiconductor-based hardware as used in today’s deep-learning accelerators [36] resulting in a
steeply rising demand for alternative hardware-systems [[18] 34]].

Optical signal processing has the potential to overcome these limitations due to its ability to operate at
higher rates while having a substantially smaller energy footprint [5, [23]]. This is particularly true for
deep neural networks which require vast amounts of independent scalar operations and can therefore
further benefit from the intrinsic parallelization capabilities for wavelength- and spatial-multiplexing
in optical processing [3,138L39], resulting in an increasing interest in so-called optical neural networks
(ONNSs) [31]]. One intriguing class of ONNs is based on the incoherent superposition of several
different light fields. Here, the analog input signals are encoded in the intensity of optical pulses
of different frequency which are then processed by the photonic integrated circuit [3} 16} [11} 15,38,
41, 142]]. As a consequence, encoding negative numbers is not possible, constraining inputs and
weights (and thus also activations and outputs) of neural networks to be non-negative (referred to
as Non-Negative Neural Networks, 4Ns, in the following). While approaches exist to circumvent
these constraints by adjusting the physical system (e.g. electronic signal subtraction [33]] or coherent,
phase-sensitive photonic architectures [21}32]]), all of these inevitably imply additional computational
demands or increase the complexity and sensitivity of the photonic circuit. Optimizing 4Ns instead
enables physically more robust implementations of ONNs based on incoherent superposition and we
identify the design of activation functions to be of particular importance for the success of 4Ns.
Despite the different approaches presented in the past [7, [10L 12} [13] [16} 124} [25] 26| 37} 40} 43]]
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only a few fulfill requirements to enable efficient training of 4Ns, which we will elaborate in this
work. Also motivated by analog computing, 4Ns have already been a research topic of interest in
the 1990’s [4} 9] 28, 130]], however, these considerations were mostly of theoretical nature and are
not directly transferable to modern neural networks. In this work, we consider practical aspects of
designing and training 4Ns with special consideration of non-negative activation functions and the
resulting need for new weight initialization approaches.

2 Non-Negative Activation Functions

As established above, 4Ns impose constraints in two areas: 1) Model weights are non-negative and 2)
inputs, outputs and all intermediate results are non-negative. Given non-negative weights and inputs,
linear transformations of the network (such as fully connected layers or convolutions) inevitably yield
non-negative results as well. Another (required) building block in terms of network architecture is
the activation function, i.e., the non-linear function that is applied to the outputs of the linear layer
(the activations). For 4Ns, its domain and image must be the non-negative real numbers. Notably, the
ubiquitous ReLU activation function R(x) = max(x,0) and its descendants (e.g., leaky ReLU [22]))
do not qualify since they are strictly linear in the non-negative domain. This can be addressed
by integrating an offset ¢ > 0 (i.e., R*"f(z) = max(z — ¢,0)) so that the region of non-linearity
(referred to as activation center) is located at c instead. Similarly, other activation functions such
as sigmoid can be shifted/scaled to retain more of the defining range of the function in the positive
domain.

However, a naive combination of the previously mentioned activation functions and linear layers im-
mensely reduces the expressiveness of the network: All components of the network are monotonically
increasing (for any combination of scalar input and output variables) and thus the whole network is
also monotonic in the same sense. For classification tasks this effect is diminished via a softmax-layer

oi(x) = % for the final classification: In a two (or more) variable scenario, softmax is
J J

actually monotonically decreasing with respect to an input variable x; and an output o () where
i # j. However, results from intermediate layers are still limited to monotony, so the non-monotonic
effect of the softmax in the last layer may not be sufficient to retain network expressiveness.

Similar to DeLaurentis et al. [9] and in reference to the biological origins, we refer to inhibitory/exci-
tatory functions as monotonically decreasing/increasing functions, but also define an inhibitory/exci-
tatory range of a function as a range on which the function is monotonically decreasing/increasing.
A way to enable non-monotonically networks under non-negative constraints and thus increase the
expressiveness of the network is the inclusion of inhibitory as well as excitatory elements. DeLauren-
tis et al. [9] proved the universal approximation theorem of Cybenko [8] in a similar setting using a
combination of regular (excitatory) as well as sign-flipped (inhibitory) logistic functions. Another
option is to choose an activation function that in itself includes inhibitory and excitatory elements.
Possibly the simplest of such functions is the shifted absolute value function A(x) = |z — ¢| for some
c>0.

3 Sequential Weight Initialization

Challenges remain in training of the 4N, including: 1) How to initialize non-negative weights
before training? 2) How does the optimization process ensure that trainable weights remain non-
negative? In this work, the second condition is ensured by clipping negative weights to zero after each
optimization step. Other strategies (e.g., multiplicative updates [1} 2]]) are conceivable as well, but are
not considered further in the following. Instead, we focus on the aspect of weight initialization, for
which commonly used methods (e.g., [[14]) are not directly transferable to 4Ns: In the unconstrained
setting, weight matrices w! € R’/ for each layer [ are initialized stochastically around zero, i.e.
E(w;;) = 0 and biases b' to zero. As a result, the activations of layers are initially also distributed
around zero, i.e., E(al) = 0 where (for FC-layers) a' = w'x + b for any activation layer input
a. This is a useful property for the commonly used nonlinearities since most established activation
functions are centered at zero. In the 4N setting, this activation centering property is not achieved
automatically: Since all weights are non-negative, the expected value (for any initialization other than
a constant initialization of zero) of activations is also strictly positive, i.e, E(aé) > 0.

The simplest initialization method would be to initialize the network weights following a uniform
distribution in the range [0,b]. We evaluate the impact of the upper bound b by training a CNN



on the CIFARI10 dataset [19]]: A straight-forward convolutional neural network (CNN) with four
convolutional layers followed by a shifted absolute value function as activation, two max pooling
operations and a final fully connected layer before the classification was trained for 500 epochs
with 5 instantiations per configuration. The convolutional layers width is controlled by the size
factor S € {1,2,...64} resulting in channel numbers of 85, 85, 165, 16S. A cosine learning rate
scheduler with an initial learning rate of 7 = 10~2 was applied. Results are shown in .
Similar to the effect which motivated Kaiming-initilization [[14], we also observe that the optimal
value for b depends on the network size. Too large upper bounds hinder convergence of the network
while too small values result in a severe drop in performance. The optimal choice for b shifts
towards smaller scales for wider networks demonstrating its dependence on network architecture.
Thus a cumbersome hyperparameter search is needed for each new network architecture. However,
shows that during training the mean of activation distribution for all layers shifts towards
the activation center regardless of the initial choice for b.
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Figure 1: Evaluation of weight initialization with uniform distribution [0, b] with constant initilization
bound b. A: Achieved test accuracy for uniform initialization (solid lines) for different values of b.
Different network widths require different values for b to achieve optimal performance. B: Mean
activation distribution after training for networks with uniform weight initialization in the range [0, b].
Independent from the weight initialization values, the activation values tend towards the activation
center after training (if convergent, i.e. b < 0.1).

This motivates an initialization of the weights, such that the activations are distributed around the
center of the activation function. In order to achieve this property, we propose the following sequential
initialization procedure: First all layers weights are initialized from an arbitrary positive distribution
(e.g. a uniform distribution between 0 and some b). Subsequently, each layers weights are rescaled
separately. For this, starting from the first layer, the mean activation m! of layer [ is computed for the
entire training dataset

121 I J l
mt = T Z 7 ZZwéjxj’t (1

where 2! denotes the input of layer [ for training sample ¢ € {1, ..., 7}. The weights w;; are scaled

by n%ll where ¢! denotes the activation center of the following activation function. Due to the linearity
of the layer’s affine operation, the modified activation is initialized around the activation function
center. Notably, all biases in the linear layers are initialized with zeros.

While the initialization progresses from the input layers of the network to the output layers, changes
to weights in deeper layers do not affect the activation distribution in earlier layers. As a result all
activation distributions are initialized to the center of the following activation function.

The process of weight initialization based on the layer activation is illustrated in [Figure 2| by showing
the activation distributions next to the activation function for a four-layer CNN with the shifted
absolute value as activation function. Additionally, the activation distributions after training (right-
most) are also centered around the activation center, supporting the usefulness of the proposed method.



Before Init to Center  After Scaling Layer 1 After Scaling Layer 2 After Scaling Layer 4 After Training

Z
5
o
2
K
E4
g
<
=
2
5}
=]
Y T Y T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Activation Input Activation Tnput Activation Input Activation Tnput Activation Tnput
s Layer 1 w— Layer 2 Layer 3 w— Layer 4 m— Activation Function

Figure 2: Illustration of the sequential initialization of the weights, so that the layer activation
distribution mean matches with the activation function center. Activation distributions per layer next
to activation function.

4 Evaluating Activation Functions in 4Ns

To explore the effect of different activation functions on 4Ns, two experiments were conducted. In
first experiment a three layer multi layer perception (MLP; with hidden layers of size 100 each) was
trained for 100 epochs on the MNIST dataset [20]. The second experiment once again evaluated the
CNN described above on the CIFAR10 dataset with fixed width of S = 8. Shifted variantes
of the ReL.U, Sigmoid (solely positive and with mixed signs [9]) and absolute value function were
applied for 4Ns. Network weights were initialized using the proposed sequential method. As a
baseline, standard ReLU, tanh and a centered absolute value function were used to train unconstrained
networks. Each run was repeated 5 times and mean with 68% CI are reported. For equal base learning
rates, all activation functions in the constrained setting showed similar conversion behavior. The final
test accuracies in dependence on the learning rate are presented in

While performances of 4Ns with excitatory-only activation functions (sigmoid and ReLU) are reduced
compared to unconstrained networks, 4Ns with activation functions comprising both inhibitory
and excitatory elements, are yielding significantly higher test accuracies. This effect is especially
pronounced for classification problems of higher complexity (CIFAR10) where the induced non-
monotony of the softmax-layer is not sufficient. Therefore, it can be concluded that the inclusion of
an additional inhibitory activation element yields significantly improved results.
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Figure 3: Evaluation of different activation functions for 4Ns and comparison with the unconstrained
networks. A: MLP on MNIST. B: CNN on CIFAR10.

5 Conclusion

In this paper, we have investigated the effects of non-negative constraints arising in incoherent
ONN:S. Specifically, we have experimentally shown the extraordinary importance of excitatory and
inhibitory elements in activations functions under these conditions which should inform design of
future activation functions in incoherent ONNs and improve the performance of the resulting systems.



Furthermore, we have proposed a general solution for the problem of weight initialization arising
specifically in 4Ns. Gains of specialized optimization methods for 4Ns (e.g., using [1} [2]]) is still an
ongoing research topic which we plan to investigate further in the future.
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