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Abstract

Particle physics searches that rely on a specific signal model have so far failed to
find evidence for physics beyond the Standard Model. Model-agnostic methods
provide an important alternative approach, as they can analyze large amounts
of data for a wide range of potential anomalies. Many state-of-the-art anomaly
detection algorithms are based on a weakly supervised classification task, where
the data samples are distinguished from samples of a background template. A key
challenge for such algorithms is their performance degradation in the presence of
uninformative features, which introduces model dependence by requiring feature
selection. In this work, we propose the use of tree-based algorithms in weakly
supervised anomaly detection with tabular data, as they are not only significantly
faster to train and evaluate than deep learning–based methods, but are also robust
to uninformative features and achieve better performance.

1 Introduction

Despite rigorous efforts by the particle physics research program at the Large Hadron Collider (LHC)
and other facilities, no conclusive evidence for physics beyond the Standard Model (BSM) has yet
been found. However, most searches for BSM physics are driven by specific signal models, such as
supersymmetric models, models based on extra-dimensional theories, etc. Since it is not feasible to
search for every possible signal model, and the regions of LHC phase space yet to be searched are
vast, model-agnostic machine learning methods have recently attracted considerable interest [1–11].

In particular, these methods have been shown to be sensitive to signal models that produce localized
resonances, such as a particle decaying into two jets (so-called di-jet resonances). In this case,
model-agnostic methods must detect the anomalous signal resonance, which is immersed in an
overwhelming amount of background consisting of quantum chromodynamics (QCD) multi-jet
events. Within this resonant anomaly detection regime, many state-of-the-art methods rely on a
weakly supervised classification task: First, events are separated into a signal region (SR), where
the majority of signal events are assumed to reside, and the sidebands (SB), which consist almost
entirely of background events. A classifier is then trained to distinguish samples of the (potentially
anomalous) data in the SR from samples of a background template typically learned from events in
the SB. Since model-agnostic methods must be unsupervised, the only labels used in classification
are whether an event is from the SR or the background template, making the task significantly more
challenging than direct signal/background discrimination.

In this difficult weakly supervised regime, the discriminative power of the input features — i.e. the
separation of signal and background in a feature — is crucial, since the inclusion of uninformative
features adds noise to an already noisy classification task. For model-agnostic anomaly detection, this
is a significant problem, as it requires the selection of features specific to a particular signal model in
order to achieve sufficient sensitivity. In particular, deep neural network (NN) classifiers — which
are used in most state-of-the-art resonant anomaly detection methods — show a significant drop in
performance once uninformative features are included. However, a fully model-independent search
would use a high-dimensional input space containing all available features, the majority of which are
expected to be uninformative for a given signal model.

One possible approach to mitigate this problem is to use classification algorithms that are more robust
to uninformative features. One family of such algorithms are boosted decision trees (BDTs), which
have been shown to outperform deep learning–based classifiers on tabular datasets while being less
affected by features that carry little or no information [12, 13]. In this contribution, we investigate the
use of BDTs in the weakly supervised regime, specifically testing their robustness to uninformative
features as well as their overall performance compared to NN classifiers. In addition, we test the use
of ensembling multiple BDT classifiers to further improve performance, which is possible due to the
significantly faster training time of these algorithms.
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2 Methods

In a traditional model-specific search for new physics, the goal is to find the best classifier that
distinguishes the signal of interest from the background. In a model-agnostic search, the signal is
unknown, which means that the classification must be entirely data driven. In such a classification
task, the goal is to distinguish potentially anomalous events in the data from background events.
Given the Neyman-Pearson lemma [14], the most powerful classifier in the model-agnostic regime
is based on the likelihood ratio between the data and background probability densities in the input
features x:

Roptimal(x) =
pdata(x)

pbg(x)
. (1)

The likelihood ratio Roptimal, which we will refer to as the optimal anomaly score, is only an
idealization that cannot be achieved in practice: The true background density pbg(x) is unknown
and can only be approximated by imperfect physics and detector simulations. The densities are also
intractable and must be approximated from samples. Existing resonant anomaly detection methods
attempt to approximate this value by training binary classifiers that discriminate between samples
drawn from the SR and samples drawn from a data-driven background template. It should be noted,
however, that while most methods have focused on the case of resonant anomaly detection, the idea of
approximating the optimal anomaly score with a classifier is not limited to this use case, see e.g. [15,
16].

Since the main point of interest of this work is the weakly supervised classification task, we use an
idealized anomaly detector (IAD) where the events of the background template and the background
events within the SR data come from the identical distribution. This ensures that the quality of the
data-driven background template generation is fully factored out, and any improvement in classifier
performance is based solely on the improvement of the classification algorithm itself.

Algorithms based on histogrammed gradient boosting have been shown not only to achieve state-
of-the-art performance on tabular data [17], but also to allow for fast training on large datasets.
Additionally, due to their simple tree structure and easily computable feature importance scores,
they provide a better understanding of the model’s decision-making compared to NNs, which is
a critical requirement in high energy physics use-cases. Therefore, we also use histogrammed
gradient boosting in this work, using the HistGradientBoostingClassifier implementation of
the scikit-learn package [18]. The hyperparameters used are set to the scikit-learn defaults.

To further improve performance and increase stability, we use an ensemble of N independent training
runs, each using a randomized training and validation sample. We have chosen the training and
validation sets to be equal in terms of sample size. After all models in the ensemble have been trained,
their N predictions on the separate test set are averaged to assess the final performance. Unless
otherwise stated, we use N = 50 models per ensemble.

For comparison with an NN classifier, we implemented a simple fully connected neural network using
the Keras package [19] with a TensorFlow [20] backend. The NN consisted of three layers, each
with 64 nodes. The activation function used for the hidden layers was Rectified Linear Unit (ReLU),
while the softmax activation function was used for the output layer. The binary cross-entropy loss
function was used to measure the performance of the model and to guide the training process. The
optimization algorithm chosen was Adam [21], with a learning rate of 0.001. During training, the
data was processed in batches of 128 samples and the training process was repeated for a total of 100
epochs. In terms of ensembling, we use the same scheme as described above for the BDT classifiers.
Also, for both classifier models, early stopping is enabled with a patience of 10 iterations/epoch.

3 Dataset and metrics

The studies are performed on the LHC Olympics 2020 R&D dataset [22, 23]. The dataset is
based on simulated di-jet events. It contains 1 000 000 QCD dijet events for the background and
100 000 signal events. The signal model used is a hypothetical Z ′ particle decaying into hadrons:
Z ′ → X(→ qq)Y (→ qq), leading to two jets in the final state, each containing two sub-jets of
quarks. The masses of the particles are mZ′ = 3.5TeV, mX = 500GeV and mY = 100GeV.
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Figure 1: SIC curve comparison of BDT and NN classifier models for fully supervised and IAD
classification tasks.

The SR for the weakly supervised classification is defined between 3.3TeV and 3.7TeV, which
contains about 120 000 background events. Unless otherwise stated, we inject 1 000 of the signal
events into the dataset, resulting in 722 signal events in the SR, corresponding to S/B = 6× 10−3.
For the background template in the SR, 612 858 additional QCD events from the same simulation are
used [24]. For the training and validation sets combined, a total of about 272k background template
events and 120k SR data events are used. The training/validation split is always set to 50 %. For the
separate test set we use 340k background and 20k signal events in the SR. For the comparison study
with a fully supervised classifier, the mentioned 120k SR data events are replaced by 54k SR signal
events.

The features used for the training are the invariant mass of the lighter of the two jets mJ1 , the
difference in jet mass between the two jets, ∆mJ = mJ2 −mJ1 as well as the subjettiness ratios
τJ121 and τJ221 of the jets [25, 26].

Throughout this paper, the main performance metric of interest is the improvement in significance
using the weakly supervised classifier relative to the inclusive significance. Therefore, the significance
improvement characteristic (SIC) is used, which is defined as

SIC =
ϵS√
ϵB

, (2)

where ϵS is the fraction of correctly identified signal events (also referred to as signal efficiency or
true positive rate) and ϵB is the fraction of background events misidentified as signal (also referred to
as background efficiency or false positive rate).

4 Results

Fig. 1 shows a performance comparison of a BDT and an NN classifier model for both the weakly
supervised IAD and the fully supervised tasks. It can be seen that BDT classifiers are at least as
powerful as NNs and that in the case of IAD, the BDT even outperforms the NN classifier for low
signal efficiencies.

To investigate the robustness of the classifiers in a more realistic anomaly detection setting, we
introduce features into the dataset that are completely uninformative: feature values are drawn from a
standard Gaussian distribution and added to the original training features for both the SR data and the
background template samples. This procedure can be repeated several times, so that the influence
of adding an increasing number of uninformative features can be assessed. The result of this study
can be seen in Figure 2. Looking at the results of the NN classifier, the rapid drop in performance is
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Figure 2: Impact of uninformative features on the IAD classification task. Comparison is done
showing SIC curves for NN classifier models (left panel) and BDT classifier models (right panel).
The legend label Baseline refers to the original feature set and the numbers before "G" indicate
the number of Gaussian noise features added. For the BDT, solid lines correspond to the median
performance of ten independent training runs and areas of reduced opacity describe the respective
inner 68 % confidence intervals. Also, for 30 and 50 Gaussian noise features, N was increased to
100. For the NN classifiers, only a single ensemble was trained to reduce computational time.

clearly visible even when only a few uninformative features are added: Already with two Gaussian
features, the NN performance is halved, and it deteriorates rapidly when five and more Gaussian
features are added.

For the BDT classifiers, however, the situation is entirely different: up to ten Gaussian features,
the performance is hardly affected. At 30 Gaussian features, the performance starts to degrade, but
still achieves a significant improvement in significance, especially at low signal efficiencies. When
50 Gaussian features are added, the performance decreases across the entire signal-to-noise ratio
range and the variance of the results increases significantly. However, a large proportion of the
baseline significance can still be retained even in this challenging regime. This shows that the use of
histogrammed boosted decision trees and ensembling allows truly model-agnostic searches, where
classifiers are trained on a large number of different input features and only a small fraction are
expected to contain information for any given signal.

5 Conclusion

We have investigated the use of (ensembled) histogrammed gradient boosted decision trees for
weakly supervised anomaly detection. Our studies show that BDT-based classifiers not only perform
at least as well as NN classifiers when no uninformative features are present, but also perform
well in a scenario where the vast majority of features are completely uninformative and where the
performance of NN classifiers breaks down. It can therefore be concluded that the robustness of
BDTs to uninformative features, which has been extensively studied in the literature for supervised
classification [12, 13, 27], also extends to the weakly supervised regime. Since this work considered
an idealized scenario, further research should focus on possible limitations and extensions of the
method. In particular, the performance when using low-level features (e.g. jet constituent features) as
well as the behavior for non-idealized background estimation remain to be studied.

In summary, the use of BDT-based classifiers represents a significant improvement in anomaly
detection methods based on weak supervision, allowing truly model-agnostic searches without the
need to fine-tune features to a specific family of signal models.
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Table 1: Subjettiness feature sets considered for training. Full training feature sets always include
mJ1 and ∆mJ as well. Details of the observables are given in the text.

Name # features Features

Baseline 4 {mJ1
, ∆mJ , τ

β=1,J1

21 , τβ=1,J2

21 }

Extended 1 10 {mJ1
, ∆mJ , τ

β=1,J1

N,N−1 , τ
β=1,J2

N,N−1} for 2 ≤ N ≤ 5

Extended 2 12 {mJ1
, ∆mJ , τ

β=1,J1

N , τβ=1,J2

N } for N ≤ 5

Extended 3 56 {mJ1
, ∆mJ , τ

β,J1

N , τβ,J2

N } for N ≤ 9 and β ∈ {0.5, 1, 2}

Appendix

Expanding the pool of features

We have established that algorithms based on histogrammed gradient boosted trees perform well when
a significant number of uninformative features is added. In particular, we studied the performance in
the worst-case scenario by adding features that consist of pure Gaussian noise. In a more realistic
scenario, additional features based on actual physics variables would be used instead.

Therefore, we also studied this case by including extended feature sets containing jet substructure
information. A summary of the different feature sets is provided in Table 1. Three extended feature
sets exist: Extended set 1 includes additional subjettiness ratios, extended set 2 also includes the
individual subjettiness features up to τ5 and extended set 3 containing 54 subjettiness features that
were computed using different angular weighting parameters β. The performance comparison was
again made for NN-based classifiers and BDT-based classifiers and the result can be seen in Figure 3.

As shown in previous studies, the NN classifier is highly sensitive to the selection of input features:
There is a significant performance drop when using extended set 1 compared to the baseline per-
formance, while the BDT classifier achieves a higher SIC with respect to the baseline for the same

BDT

NN

Figure 3: Impact of including additional physics features in the IAD classification task. Comparison
is done showing SIC curves for NN classifier models (dashed lines) and BDT classifier models (solid
lines). The different feature sets are summarized in Table 1. For the BDT, the solid lines correspond
to the median performance of ten independent training runs and areas of reduced opacity describe the
respective inner 68 % confidence intervals. For the NN classifiers, only a single ensemble was trained
to reduce computational time.
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feature set. For extended feature sets 2 and 3, the performance of both classifiers increases due to
the information content from the additional subjettiness features. This behavior is in line with the
previous findings: While for the BDT-based classifier the performance is at least as good as the
baseline when more features are added, the NN performance can increase or decrease significantly
depending on which particular set of features is used.

References
[1] E. M. Metodiev, B. Nachman, and J. Thaler, “Classification without labels: Learning from

mixed samples in high energy physics,” JHEP, vol. 10, p. 174, 2017. DOI: 10 . 1007 /
JHEP10(2017)174. arXiv: 1708.02949 [hep-ph].

[2] J. H. Collins, K. Howe, and B. Nachman, “Anomaly Detection for Resonant New Physics
with Machine Learning,” Phys. Rev. Lett., vol. 121, no. 24, p. 241 803, 2018. DOI: 10.1103/
PhysRevLett.121.241803. arXiv: 1805.02664 [hep-ph].

[3] J. H. Collins, K. Howe, and B. Nachman, “Extending the search for new resonances with
machine learning,” Phys. Rev., vol. D99, no. 1, p. 014 038, 2019. DOI: 10.1103/PhysRevD.
99.014038. arXiv: 1902.02634 [hep-ph].

[4] B. Nachman and D. Shih, “Anomaly Detection with Density Estimation,” Phys. Rev. D,
vol. 101, p. 075 042, 2020. DOI: 10.1103/PhysRevD.101.075042. arXiv: 2001.04990
[hep-ph].

[5] A. Andreassen, B. Nachman, and D. Shih, “Simulation Assisted Likelihood-free Anomaly
Detection,” Phys. Rev. D, vol. 101, no. 9, p. 095 004, 2020. DOI: 10.1103/PhysRevD.101.
095004. arXiv: 2001.05001 [hep-ph].

[6] K. Benkendorfer, L. L. Pottier, and B. Nachman, “Simulation-assisted decorrelation for
resonant anomaly detection,” Phys. Rev. D, vol. 104, no. 3, p. 035 003, 2021. DOI: 10.1103/
PhysRevD.104.035003. arXiv: 2009.02205 [hep-ph].

[7] A. Hallin et al., “Classifying anomalies through outer density estimation,” Phys. Rev. D,
vol. 106, no. 5, p. 055 006, 2022. DOI: 10.1103/PhysRevD.106.055006. arXiv: 2109.
00546 [hep-ph].

[8] J. A. Raine, S. Klein, D. Sengupta, and T. Golling, “CURTAINs for your sliding window:
Constructing unobserved regions by transforming adjacent intervals,” Front. Big Data, vol. 6,
p. 899 345, 2023. DOI: 10.3389/fdata.2023.899345. arXiv: 2203.09470 [hep-ph].

[9] A. Hallin, G. Kasieczka, T. Quadfasel, D. Shih, and M. Sommerhalder, “Resonant anomaly
detection without background sculpting,” Phys. Rev. D, vol. 107, no. 11, p. 114 012, 2023. DOI:
10.1103/PhysRevD.107.114012. arXiv: 2210.14924 [hep-ph].

[10] T. Golling, S. Klein, R. Mastandrea, and B. Nachman, “Flow-enhanced transportation for
anomaly detection,” Phys. Rev. D, vol. 107, no. 9, p. 096 025, 2023. DOI: 10.1103/PhysRevD.
107.096025. arXiv: 2212.11285 [hep-ph].

[11] T. Golling et al., “The Interplay of Machine Learning–based Resonant Anomaly Detection
Methods,” arXiv: 2307.11157 [hep-ph].

[12] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci, “Deep neural
networks and tabular data: A survey,” IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–21, 2022. DOI: 10.1109/TNNLS.2022.3229161.

[13] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based models still outperform
deep learning on tabular data?,” arXiv: 2207.08815 [cs.LG].

[14] J. Neyman and E. S. Pearson, “On the Problem of the Most Efficient Tests of Statistical
Hypotheses,” Phil. Trans. Roy. Soc. Lond. A, vol. 231, no. 694-706, pp. 289–337, 1933. DOI:
10.1098/rsta.1933.0009.

[15] T. Finke, M. Krämer, M. Lipp, and A. Mück, “Boosting mono-jet searches with model-agnostic
machine learning,” JHEP, vol. 08, p. 015, 2022. DOI: 10.1007/JHEP08(2022)015. arXiv:
2204.11889 [hep-ph].

[16] G. Bickendorf, M. Drees, G. Kasieczka, C. Krause, and D. Shih, “Combining Resonant and
Tail-based Anomaly Detection,” Sep. 2023. arXiv: 2309.12918 [hep-ph].

[17] H. Carlens, State of competitive machine learning in 2022, https://mlcontests.com/
state-of-competitive-data-science-2022.

7

https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP10(2017)174
https://arxiv.org/abs/1708.02949
https://doi.org/10.1103/PhysRevLett.121.241803
https://doi.org/10.1103/PhysRevLett.121.241803
https://arxiv.org/abs/1805.02664
https://doi.org/10.1103/PhysRevD.99.014038
https://doi.org/10.1103/PhysRevD.99.014038
https://arxiv.org/abs/1902.02634
https://doi.org/10.1103/PhysRevD.101.075042
https://arxiv.org/abs/2001.04990
https://arxiv.org/abs/2001.04990
https://doi.org/10.1103/PhysRevD.101.095004
https://doi.org/10.1103/PhysRevD.101.095004
https://arxiv.org/abs/2001.05001
https://doi.org/10.1103/PhysRevD.104.035003
https://doi.org/10.1103/PhysRevD.104.035003
https://arxiv.org/abs/2009.02205
https://doi.org/10.1103/PhysRevD.106.055006
https://arxiv.org/abs/2109.00546
https://arxiv.org/abs/2109.00546
https://doi.org/10.3389/fdata.2023.899345
https://arxiv.org/abs/2203.09470
https://doi.org/10.1103/PhysRevD.107.114012
https://arxiv.org/abs/2210.14924
https://doi.org/10.1103/PhysRevD.107.096025
https://doi.org/10.1103/PhysRevD.107.096025
https://arxiv.org/abs/2212.11285
https://arxiv.org/abs/2307.11157
https://doi.org/10.1109/TNNLS.2022.3229161
https://arxiv.org/abs/2207.08815
https://doi.org/10.1098/rsta.1933.0009
https://doi.org/10.1007/JHEP08(2022)015
https://arxiv.org/abs/2204.11889
https://arxiv.org/abs/2309.12918
https://mlcontests.com/state-of-competitive-data-science-2022
https://mlcontests.com/state-of-competitive-data-science-2022


[18] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[19] F. Chollet et al., Keras, https://keras.io, 2015.
[20] Martín Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems,

Software available from https://www.tensorflow.org/, 2015.
[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” eprint: arXiv:

1412.6980.
[22] G. Kasieczka, B. Nachman, and D. Shih, R&d dataset for lhc olympics 2020 anomaly detection

challenge, https://zenodo.org/record/6466204, 2019.
[23] G. Kasieczka et al., “The LHC Olympics 2020: A Community Challenge for Anomaly

Detection in High Energy Physics,” arXiv: 2101.08320 [hep-ph].
[24] D. Shih, Additional qcd background events for lhco2020 r&d (signal region only), https:

//zenodo.org/record/5759086, 2021.
[25] J. Thaler and K. Van Tilburg, “Identifying Boosted Objects with N-subjettiness,” JHEP, vol. 03,

p. 015, 2011. DOI: 10.1007/JHEP03(2011)015. arXiv: 1011.2268 [hep-ph].
[26] J. Thaler and K. Van Tilburg, “Maximizing Boosted Top Identification by Minimizing N-

subjettiness,” JHEP, vol. 02, p. 093, 2012. DOI: 10.1007/JHEP02(2012)093. arXiv: 1108.
2701 [hep-ph].

[27] A. Y. Ng, “Feature selection, l1 vs. l2 regularization, and rotational invariance,” in Proceedings
of the Twenty-First International Conference on Machine Learning, ser. ICML ’04, Banff,
Alberta, Canada: Association for Computing Machinery, 2004, p. 78, ISBN: 1581138385. DOI:
10.1145/1015330.1015435. [Online]. Available: https://doi.org/10.1145/1015330.
1015435.

8

https://keras.io
https://www.tensorflow.org/
arXiv:1412.6980
arXiv:1412.6980
https://zenodo.org/record/6466204
https://arxiv.org/abs/2101.08320
https://zenodo.org/record/5759086
https://zenodo.org/record/5759086
https://doi.org/10.1007/JHEP03(2011)015
https://arxiv.org/abs/1011.2268
https://doi.org/10.1007/JHEP02(2012)093
https://arxiv.org/abs/1108.2701
https://arxiv.org/abs/1108.2701
https://doi.org/10.1145/1015330.1015435
https://doi.org/10.1145/1015330.1015435
https://doi.org/10.1145/1015330.1015435

	Introduction
	Methods
	Dataset and metrics
	Results
	Conclusion

