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Abstract

Over the past decades, hemodynamics simulators have become tools of choice for
studying cardiovascular systems and are routinely used to simulate whole-body
hemodynamics from physiological parameters. Nevertheless, solving the corre-
sponding inverse problem of mapping waveforms back to plausible physiological
parameters remains challenging. Motivated by advances in simulation-based in-
ference (SBI), we cast this inverse problem as statistical inference. Our study
highlights the potential of estimating new biomarkers from standard-of-care mea-
surements and reveals practically relevant findings that cannot be captured by
standard sensitivity analyses, such as the existence of sub-populations for which pa-
rameter estimation exhibits distinct uncertainty regimes. In addition, we study how
such insights obtained in-silico transfer to in-vivo with the MIMIC-III database.
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Figure 1: SBI enables uncertainty analysis at the level of individual measurements and reveals two sub-
populations with, respectively, uni-modal and bi-modal uncertainty distributions. a: Whole-body hemodynamics
simulator. b: Measurements generated from a simulated population of humans. c: Neural posterior estimation
provides posterior distributions of the parameters of interest given the digital PPG. d: Two posterior distributions
respectively corresponding to an individual measurement from each identified sub-population, highlighting the
benefit of uncertainty representation at the individual level. e: Sub-sets of measurements corresponding to the
two identified sub-population, revealing distinct morphological characteristics in each sub-group.

1 Introduction

Nowadays, biophysical models can describe cardiac function with 3D models [6], or even emulate
hemodynamics in the entire human arterial system [39, 12, 1]. These models have moved from paper
calculations [4, 48] to complex numerical simulations [60, 39, 12, 1] and support the development
of personalized monitoring and treatment of cardiovascular (CV) diseases. While whole-body 1D
hemodynamics simulators [39, 12] establish a clear path from latent physiological variables to
measurable biosignals, their use for scientific inquiry, or precision medicine, necessitates solving the
corresponding inverse problem of inferring latent biomarkers from measurable biosignals.

Recent works have studied these inverse problems with variance-based sensitivity analysis, high-
lighting which biomarkers have the most decisive influence on measured biosignals [41, 53, 50]. In
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parallel, machine learning approaches, relying on sophisticated patterns for predicting biomarkers
from biosignals, have gained popularity [11, 26, 7, 25, 8]. While these approaches provide an essential
step towards a better understanding of the inverse problem, they do not address the challenges caused
by the non-deterministic and multi-modal nature of inverse solutions. Motivated by breakthroughs in
simulation-based inference [SBI, 15, 58], which has addressed similar challenges in other scientific
fields, we go beyond producing point-estimates for such inverse problems and consider instead a
distributional perspective supported by neural posterior estimation [36]. As a result, the SBI method-
ology provides a consistent, multi-dimensional and, individualized representation of uncertainty and
naturally handles ambiguous inverse solutions, as showcased in Figure 1.

2 Background on Hemodynamics and SBI

2.1 Inverting Whole-body 1D Cardiovascular Simulations

We define a simulator as a forward generative process g : Θ → X that inputs a vector of parameters
θ ∈ Θ and returns a simulation x ∈ X . Simulators may depend on a large number of parameters and
be stochastic. In practice, we split the parameters θ = (ϕ, ψ) ∈ Θ = Φ×Ψ into variables of direct
interest ϕ ∈ Φ and nuisance parameters ψ ∈ Ψ that are necessary to run the simulations but are not
of direct interest for the downstream task.

We rely in this work on the simulator from [12], describing the hemodynamics in the 116 largest
human arteries. The model’s parameters describe the blood out-flowing the left ventricle, uni-
dimensional physical properties of each artery, and a lumped-element model of the vascular beds, see
Appendix A.1 for more details about this model. We study the identifiability of the parameters ϕ ∈ Φ
of physiological interest (a.k.a. biomarkers), from a given measurement x ∈ X (a.k.a. biosignals).
The biomarkers considered are the heart rate [HR, 29], the left ventricular ejection time [LVET,
3], the average diameter of the arteries [Diameter, 47], the pulse wave velocity [PWV, 55], and the
systemic vascular resistance [SVR, 14]; which are all relevant to assess CV health as supported by
the provided references [29, 3, 47, 55, 14]. We consider biosignals that are commonly collected in
intensive care units (ICUs) or in medical studies: the arterial pressure waveform (APW) at the radial
artery and the photoplethysmograms (PPGs) at the digital and the radial arteries.

We study a virtual population aged 25 to 75 with several (up to 100s of) free parameters θ that model
heterogeneous cardiac and arterial properties. In this context, a consistent representation of the
solution’s uncertainty is key, in order to capture 1. the effect of nuisance parameters, responsible
for the forward model stochasticity; 2. the symmetries of the forward model, leading to non-unique
inverse solutions; 3. the lack of sensitivity, magnifying small output uncertainty into high input
uncertainty; and 4. the heterogeneity of the population considered, leading to distinct uncertainty
profiles.

2.2 Simulation-based Inference (SBI)

SBI [15] has established itself as an essential tool in various domains of science that rely on com-
plex simulations, e.g., in astrophysics [19, 16, 62], particle physics [10], neuroscience [34, 33],
robotics [38], and many others [23, 59, 5]. SBI extends statistical inference to statistical models de-
fined implicitly from a simulator and provides a consistent representation of uncertainty as demanded
by the four requirements listed in the previous paragraph.

While possible, applying statistical inference to simulators is challenged by the computational
complexity of likelihood evaluation, if not its complete intractability. Here, the CV simulator takes a
few minutes to run on a modern CPU, preventing the use of non-amortized inference algorithms, such
as Markov Chain Monte Carlo sampling. As a solution, SBI algorithms leverage modern machine
learning methods to tackle inference in likelihood-free settings [35, 18, 21], see [15] for a thorough
review. Here, we rely on neural posterior estimation [NPE, 36], a Bayesian and amortized method,
which learns a surrogate of the posterior distribution p(ϕ | x) with conditional density estimation,
enabling fast and accurate approximation of the true posterior distributions for any observation.
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Figure 2: Average size of credible intervals over the test population for credibility levels 68% and 95% of
the learned posterior distributions. The x-axis denotes the signal-to-noise-ratio (SNR) for different types of
measurements. Results are averaged over five training instances, the vertical bars report one standard deviation.

3 Results

Our experiments consider both in-silico and in-vivo scenarios. We split the simulation dataset from
[12] into train (70%), validation (10%), and test sets (20%) at random. All results reported are on the
test set for the NPE models that maximize the validation likelihood, error bars report the standard
deviation over five training instances. As a prerequisite for a meaningful analysis, we have checked
that the posterior distributions learned are well statistically calibrated, see Appendix A.4.1.

3.1 In-silico analysis

SBI enables comprehensive population-level uncertainty analyses. Figure 2 shows the average
size of credible intervals for the parameters of interest. We consider an additive Gaussian noise
with five amplitudes and observe the size of intervals as a function of SNR. Comparing these to
the intervals of the prior distribution enables to quantify the information content of a measurement
about the biomarkers. Unsurprisingly, the HR is easily identified from all measurements, except
for very high levels of noise. Overall, uncertainty about all parameters reduces significantly as the
noise level decreases. This observation indicates that the measurements carry information about all
parameters considered, as highlighted by other studies [41, 12, 13]. The results also highlight that
each measurement has its unique information content. For instance, the digital PPG reveals more
about SVR and PWV than the radial PPG. However, it is the opposite for the Diameter for which the
Radial PPG is the most informative measurement. These results highlight that, similarly to standard
sensitivity analyses, SBI enables interpretable assessment of the predictability of biomarkers from
biosignals, in-silico, while having additional properties exemplified in subsequent experiments.

Unimodal vs Multimodal

Figure 3: NPE (top: plain line, bottom: in red and
blue) vs. Laplace’s approximation (top: dashed lines,
bottom: gray). Colors denote the different populations
considered (cf. Figure 1), black lines denote the true
value of the parameter, and the white star is the point
estimate. NPE is better calibrated than the Laplace’s
approximation (left top plot) and yields tighter credible
intervals (right top plot).

SBI enables per-individual uncertainty quan-
tification. Figure 3 compares the estimation of
uncertainty provided by NPE and Laplace’s ap-
proximation [37] around the expectation of the
posterior distribution, which is representative of
the underlying assumptions made in variance-
based sensitivity analyses (VBSAs). Similarly
to VBSAs, Laplace’s approximation models un-
certainty through a second-order statistic over
the population considered. NPE’s credible in-
tervals are tighter and better calibrated than
Laplace’s ones, which are either overconfident
for measurements that lead to multi-modal pos-
terior distributions or under-confident otherwise.
We argue that an inconsistent quantification
of uncertainty, e.g., as obtained under over-
simplified assumptions made by VBSAs, may
be misleading.

Figure 1 sketches the use of SBI to study the
relationship between the digital PPG and the
SVR and LVET. The figure highlights distinc-
tive aspects of posterior distributions within the
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population studied for which we tested multi-modality [22]. While the uncertainty about the value
of SVR and LVET can be reduced substantially for approximately half of the test population, for
the other half, the posterior is multi-modal. Although a point estimator is reasonable for the first
sub-population, it is a poor guess for the multi-modal sub-population. Together, Figure 3 and Figure 1
demonstrate that the consistent, multi-dimensional, and individualized representation of uncertainty,
provided by NPE, yields essential insights from CV models that are left unnoticed by VBSAs.

3.2 In-vivo analysis

Models are never a perfect representation of real-world data [9]. Misspecification, as it becomes more
significant, may hamper the practical relevance of insights extracted from a model [66]. Nevertheless,
conclusions that are independent of the most critical sources of misspecification are often valid both
in-silico and in-vivo. We now consider real-world data from the MIMIC-III dataset [28] and evaluate
how observations made in-silico can translate to real-world insights.

MIMIC-III results. In Figure 4, we assess the performance of surrogate posterior distributions
learned on simulations in predicting HR and LVET using 8-second waveforms from the MIMIC-
III dataset [28]. Examples of such waveforms are showcased in Appendix A.3. As the posterior
distributions are uni-modal for the LVET and HR, we focus on point estimates obtained by taking
the expectation of the posterior distributions. While we can accurately determine HR by counting
the number of beats, we only get noisy labels for LVET [17, 3]. Although these labels are not very
accurate, they serve as a baseline for comparison. We evaluate the mean absolute error (MAE) and
correlation between the point estimates and the labels. We observe successful transfer of posterior
distributions to real-world data for HR but not for LVET. The MAE of LVET approaches that of the
prior distribution, indicating limited improvement. However, the remaining correlation between the
predicted and real LVET values suggest a partial transfer of information.

Figure 4: Mean absolute error (MAE) and correlation between
the labels and point estimates extracted from the posterior dis-
tributions trained for different SNR values. The LVET’s per-
formance is compared to the predictions of a prior distribution
conditioned on age and HR. The features predicting HR gen-
eralizes better than the one for LVET. The HR MAE decreases
with decreasing SNR, indicating the posterior gains robustness
to misspecification with decreasing SNR. The features extracted
for LVET do not generalize to real-world data but seems to in-
form more than only age and HR as the posterior’s correlation
is higher than the prior one.

On the one hand, in-silico and in-vivo
results consistently show that HR esti-
mation performs steadily well if SNR is
higher than 5dB. On the other hand, they
mismatch for the LVET, suggesting that
the LVET effect is significantly misrepre-
sented. Investigating and alleviating this
misspecification with the appropriate mod-
ifications to the model might be crucial to
successfully transferring findings from in-
silico to in-vivo. This iterative process
of 1. model analysis, 2. real-world ex-
perimentation, 3. comparison with ob-
servations, and 4. model refinement; ex-
emplifies the scientific method. Our re-
sults demonstrate that SBI facilitates more
scrutiny in applying the scientific loop to
numerical CV models, in extracting scien-
tific hypotheses from the model (step 1.);
and comparing theoretical predictions and
real-world data (step 3.).

4 Conclusion

We have introduced a simulation-based inference methodology to analyze complex cardiovascular
simulators. Our results show that our simulation-based inference method yields additional insights
about 1D hemodynamics models, beyond the standard sensitivity analyses. This is done by con-
sidering the complete posterior distribution, which provides a consistent and multi-dimensional
quantification of uncertainty for individual measurements. This uncertainty representation enables us
to recognize ambiguous inverse solutions, study the heterogeneity of sensitivity in the population
considered, and understand dependencies between biomarkers in the inverse problem. Supported by
results on real-world data, we have illustrated and discussed the challenge of model misspecification
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in scientific inquiry. In summary, simulation-based inference enables scientists to address inverse
problems in CV models, accounting for complex forward model dynamics and individualized uncer-
tainty. This extended abstract provides foundations for a more effective use of CV simulations for
scientific inquiry and personalized medicine.
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A Materials & Methods

A.1 1D hemodynamics of the human arterial network

The full-body arterial model introduced in [2], on which [12] relies, describes the arterial pulse wave
propagation into 116 arterial segments, making up the largest arteries of the thorax, limbs, and head.
This model is a good compromise between faithfulness to the real-world system and complexity [1].
It enables forward simulating APWs and PPGs at multiple locations, given a set of physiological
parameters describing the geometrical and physical properties of the cardiovascular system. Running
a simulation takes a few minutes on any standard CPU [41], allowing [12] to release a dataset of
4374 simulated healthy individuals aged 25 to 75.

Compared to 3D and 0D models, 1D models offer a better balance between expressivity and efficiency.
While 1D simulations may be less accurate than 3D models (e.g., they cannot model atherosclerosis
as they do not consider wall shear stress), they trade a modest and well-studied decrease in accuracy
against much lighter simulation costs [67, 1]. Furthermore, the tractable parameterization and efficient
simulation of 3D whole-body hemodynamics remain two open research questions [49, 32]. On the
other side of the CV modeling spectrum, 0D simulations [27, 54] rely on a lumped-element model to
describe the relationship between blood flow at one location (e.g., left ventricle outflow) and blood
pressure and flow at other locations. In addition to ignoring significant physical effects such as wave
propagation and reflection, 0D models are partially parameterized by non-physiological quantities.
Generating a representative population, such as the one considered in [12], can thus be challenging
with these models.

Model description. In [2], the authors consider the compartmentalized arterial model made of
the following sub-models: 1. the heart function; 2. the arterial system; 3. the geometry of arterial
segments; 4. the blood flow; and 5. the vascular beds. The heart function describes the blood volume
along time at the aorta as a five-parameter function. The arterial system is described as a graph, the
heart is the parent root, and then arteries branch out into the body. Every branch of the network
represents an arterial segment. Segments are coupled so that the conservation of mass and momentum
hold in the complete system. Additionally, the heart function defines the boundary condition on the
parent root of the arterial network. The vascular bed describes the boundary condition on the leaf
nodes. The geometry of arterial segments assumes the segments are axial-symmetric and tapered
tubes. Hence, the geometry of each arterial segment can be described using 1D parameters such as
radius and thickness of the arterial wall. The blood flow in the 1D segments follows fluid dynamics,
which depends on the geometry and visco-elastic properties of the arterial wall. The vascular beds
are modeled using 0D approximations, i.e., the geometrical description is being lumped into a
space-independent parametric transfer function.

The main state parameters of whole-body 1D hemodynamics models are the volumetric flow rate
Q(z, t), the blood pressure P (z, t), and the vessel cross-sectional area A(z, t) at axial position z and
time t, in each artery considered. Based on the conservation of mass and momentum, one can derive
the partial differential equations (PDEs)

∂A

∂t
+
∂Q

∂z
= 0 (1)

∂Q

∂t
+

∂

∂z

(
α
Q2

A

)
+
A

ρ

∂P

∂z
= −2

µ

ρ
(γν + 2)

Q

A
, (2)

where α is the Coriolis’ coefficient, µ is the blood dynamic viscosity, and γν is a parameter defining
the shape of the radial velocity profile. A third relationship of the arterial wall mechanics relates
pressure and cross-section area as

P (A) = Pext + β
(√

A−
√
A0

)
+

Γ√
A

∂A

∂t
, (3)

where β =
4

3

√
πEh0
A0

and Γ =
2

3

√
πφh0
A0

(4)

respectively denote the elastic and viscous components of the Voigt-type visco-elastic tube law,
Pext is the reference pressure at which the geometry is described by the cross-sectional area A0

and thickness of the arterial wall h0. The elastic modulus E and wall viscosity φ characterize the
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mechanical properties of the wall. In addition to these PDEs, boundary conditions are formulated by
coupling each artery segment with the parents and children in the arterial network. For further details,
see [40, 12, 2].

The considered 1D hemodynamics model constitutes a complex simulator with many parameters.
As described in Section 2, only a subset of these parameters are of direct interest. Other parameters
are considered nuisance effects. In addition, we consider a measurement model that generates
biosignals similar to the one in MIMIC-III. Appendix A.6 provides additional details on the parameters
distributions and the measurement model considered.

A.2 Simulation-based inference

Neural Posterior Estimation (NPE). As mentioned in Section 2, NPE [43, 36] is a Bayesian and
amortized SBI algorithm. It trains a parametric conditional density estimator for the parameters of
interest pω(ϕ | x) on a dataset D := {(ϕi,xi)}Ni=1 of samples from the joint distribution p(ϕ,x) =∫
p(ϕ, ψ)p(x | ϕ, ψ)dψ. In this work, we rely on a rich class of neural density estimators called

normalizing flows [NF, 57, 56, 51, 31, 44], from which both density evaluation and sampling is
possible.

Given an expressive class of neural density estimators {pω(ϕ | x) : ω ∈ Ω}, NPE aims to learn an
amortized posterior distribution pω⋆(ϕ | x) that works well for all possible observation x ∈ X , by
solving

ω⋆ ∈ argmin
ω∈Ω

Ex [KL [p(ϕ | x) ∥ pω(ϕ | x)]] (5)

⇐⇒ ω⋆ ∈ argmin
ω∈Ω

∫
p(x)p(ϕ | x)

[
log

p(ϕ | x)
pω(ϕ | x)

]
dxdϕ (6)

⇐⇒ ω⋆ ∈ argmax
ω∈Ω

∫
p(x)p(ϕ | x) log pω(ϕ | x)dxdϕ (7)

⇐⇒ ω⋆ ∈ argmax
ω∈Ω

E(ϕ,x) [log pω(ϕ | x)] . (8)

In practice, NPE approximates the expectation in (8) with an empirical average over the training set D
and relies on stochastic gradient descent to solve the corresponding optimization problem. Assuming
ϕ ∈ Rk and unpacking the evaluation of the NF-based conditional density estimator, the training loss
is

ℓ(D, ω) = 1

N

N∑
i=1

log pz

(
fω

(
ϕi;xi

))
+ log|Jfω (ϕi;xi)|, (9)

following from the change-of-variables theorem [56]. The symbol pz denotes the density function of
an arbitrary k-dimensional distribution (e.g., an isotropic Gaussian), fω : Rk ×X → Rk denotes a
continuous function invertible for its first argument ϕ, parameterized by a neural network, and |Jfω |
denotes the absolute value of the Jacobian’s determinant of fω with respect to its first argument. In
addition to density evaluation, as in (9), the NF enables sampling from the modeled distribution by
inverting the function fω .

In our experiments, we combine a convolutional neural network encoding the observations x with
a three-step autoregressive affine NF [45] which offers a good balance between expressivity and
sampling efficiency as demonstrated in [64]. These models have an inductive bias towards simple
density functions [61], which support that the multi-modality and diversity of posterior distributions
observed in the population is not an artifact of our analysis but follows from the 1D cardiovascular
model and prior considered. We provide additional details on the parameterization of f and the
sampling algorithm in Appendix A.7.

Uncertainty analysis with SBI. Uncertainty analysis [52, 24] regards identifiability as a continuous
attribute of a model which allows ranking models by how much information the modeled observation
process carries about the parameter of interest. We move away from the classical notion of statistical
identifiability – convergence in probability of the maximum likelihood estimator to the actual
parameter value – because this binary notion is not always relevant in practice and mainly applies
to studies in the large sample size regime. In contrast, uncertainty analysis directly relates to the
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mutual information between the parameter of interest and the observation as expressed by the model
considered. It captures that biased or noisy estimators are informative and may suffice for downstream
tasks.

As is standard in Bayesian uncertainty analyses, we look at credible regions Φα(x) at different levels
α, which are directly extracted from the posterior distribution p(ϕ | x). Formally, a credible region
is a subset, Φα, of the parameter space Φ over which the conditional density integrates to α, i.e.,
Φα :

∫
ϕ∈Φα(x)

p(ϕ | x)dϕ = α,Φα ⊆ Φ. In this paper, we consider the smallest covering union of
regions, denoted by Φα, which is always unique in our case and in most practical settings.

Size of credible intervals (SCI). We rely on the SCI to shed light on the uncertainty of a parameter
given a measurement process. The SCI at a level α is the expected size of the credible region at this
level: Ex[∥Φ̃α(x)∥], where ∥ · ∥ measures the size of a subset of the parameter space. In practice,
we split the parameter space into evenly sized cells and count the number of cells belonging to the
credible interval, as detailed in Appendix A.5.2. SCI is easier to interpret for domain experts than
mutual information, as the former is expressed in the parameter’s units. In addition, SCI is robust to
multi-modality in contrast to point-estimator-based metrics (e.g., mean squared/absolute error) that
cannot discriminate between two posterior distributions if they lead to the same point estimate.

Calibration. Given samples from the joint distribution p(ϕ,x), credible intervals are expected
to contain the true value of the parameter at a frequency equal to the credibility level α, that is,
Ep(ϕ,x) [1Φα

(ϕ)] = α, where 1 is the indicator function. In this work, we do not have access to
the true posterior but a surrogate p̃ of it. Hence, the coverage property of credible regions, which
support the interpretation of uncertainty, may be violated, even when the forward model and the
prior accurately describe the data. The calibration C(p̃(ϕ | x),D) of a surrogate posterior p̃ is
a metric, computed on a set D := {(ϕ⋆j ,xj)}Nj=1, that measures whether the surrogate’s credible
regions respect coverage. We compute calibration as

C(p̃(ϕ | x),D) =
1

k

k∑
i=1

∣∣∣∣ ik − 1

N

N∑
j=1

1Φ̃ i
k

(ϕ⋆j (xj))

∣∣∣∣,
where Φ̃ i

k
(xj) is the credible region at level α = i

k corresponding to the surrogate posterior
distribution p̃(ϕ | xj). The calibration directly relates to how much the surrogate posterior model
violates the coverage property over all possible levels α ∈ ]0, 1].

A.3 In-vivo vs in-silico data

In this section we provide an overview of the generation of in-silico data, in Figure 5, and a few
examples of the real-world data considered from MIMIC, in Figure 6. We observe that real-world
data contains degenerated beats. Moreover, another source of variation between beats comes from
physiological parameter dynamics, which can vary from one beat to another. These observations
motivate the introduction of noise on top of the deterministic simulation as discussed in the main
paper and shown in Figure 5.

Full-Body
Hemo-

dynamics
Simulator

Figure 5: Generation of a digital PPG observation in-silico. From left to right: a PPG signal is
extracted from the 1D hemodynamics simulator, the same wave is concatenated to reach a length of
10 seconds, the 10-second segment is cropped randomly by two seconds, additive Gaussian noise is
added (SNR ≈ 11dB).
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Figure 6: Waveforms reproduced from the MIMIC-III waveform database [42] subset of the PulseDB
dataset [63].

A.4 Supplementary results

In this section we provide additional perspectives on the learned surrogate models of the posterior
distributions.

A.4.1 Calibration and MAE

Figure 7 presents the mean average precision of a point estimator obtained as the mean of the posterior
distribution and the calibration of these posterior distributions. Most surrogate models trained with
NPE are well calibrated. However, there remains a risk that a surrogate model is not well calibrated,
such as observed for the Digital PPG for inferring some of the parameters for low levels of noise.
The MAEs have a similar behavior as the average sizes of credible intervals at size 68% and 95%
discussed in the main materials.

Figure 7: Mean absolute error (MAE) of the expected value of the posterior distributions and
calibration of the credible intervals. Except for the Digital PPG, at high level of noise, models are
well calibrated. The MAEs follow the trend expected from the analysis of the size of credible intervals
in the main materials.

A.4.2 Posterior distributions

One desirable consequence of relying on SBI to analyze hemodynamics models is to provide access
to the joint conditional distribution of parameters given an observation. In Figure 8, we show the
posterior distributions corresponding to two randomly selected simulated digital PPGs of the test
set. These plots reveal how different measurements can lead to very different posterior distributions
and highlight the relevance of considering sub-groups rather than the entire population at once. In
addition, Figure 9 presents the posterior distributions corresponding to the different measurement
types studied. From this figure we observe that different measurements carry different information
about the parameters and thus can lead to very different posterior distributions. Such plots may also
indicate when multiple measurements should be done and when this is likely useless.

A.5 Metrics

In this section, we provide the algorithms used to compute the calibration, in Algorithm 1, and size
of credible intervals from samples of the surrogate posterior distributions, in Algorithm 2.
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(a) (b)

Figure 8: Posterior distributions obtained for two different test observation of digital PPGs.

(a) (b)

Figure 9: Comparison between the posterior distributions corresponding to different measurements.

A.5.1 Calibration

Algorithm 1 returns the distribution of minimum credibility levels required to not reject the true
value of ϕ. Under calibration, these values should be uniformly distributed – we expect to reject
falsely the true value with a frequency equal to the credibility level chosen. We report the integral
(along credibility levels α) between the observed cumulative distribution function (CDF) of minimum
credibility levels and the CDF of a uniform distribution. This metric equals 0 under perfect calibration
and is bounded by 0.5. We report the calibration for each dimension independently as the metric does
not generalize to multiple dimension.

A.5.2 Size of credible intervals

Algorithm 2 describes a procedure to compute the size of credible intervals. In our experiments, we
consider each dimension independently and discretize the space of value in 100 cells. We finally
report the average number of cells multiplied by the size of one cell in the physical unit of the
parameter.
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Algorithm 1 Statistical Calibration of Posterior Distribution
Input: Dataset of pairs D = {(ϕi, xi)}, Posterior distribution p(ϕ|x), Number of samples N .
Output: Distribution of minimum credibility levels.

1: Initialize an empty list CredLevels
2: for (ϕi, xi) ∈ D do
3: Initialize an empty list Samples
4: for i = 1 to N do
5: Sample ϕi from p(ϕ|x)
6: Append ϕi to Samples
7: end for
8: Sort Samples
9: Compute the rank (position in ascending order) r of ϕ in Samples

10: Set CredLevel = r
N

11: Append CredLevel to CredLevels
12: end for
Return: CredLevels.

Algorithm 2 Compute Average Size of Credible Intervals
Input: Dataset of observations x, Posterior distribution p(ϕ|x), Credibility level α Output: Average
size of credible intervals

1: Initialize an empty list CredIntSizes
2: for each observation x in the dataset do
3: Generate samples from the posterior distribution: ϕsamples = SampleFromPosterior(p(ϕ|x))
4: Discretize the parameter space into cells
5: Initialize an empty list CellCounts
6: for each sample ϕ in ϕsamples do
7: Increase by one the count the cell covering ϕ
8: end for
9: Sort the CellCounts list in descending order

10: Append the minimum number of cells required to reach the credible level α to CredIntSizes.
11: end for
12: Compute the average size of credible intervals by taking the mean of the CredIntSizes list
Return: Average size of credible intervals

A.5.3 Mutual information and SCI

In our experiments, we gave the average size of credible (SCI) intervals rather than the mutual
information, as the former quantity is expressed in physical units that have a direct interpretation to
specialists. We now discuss how the SCI relates to mutual information.
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Figure 10: Relationship between the size of credible intervals and the information content present in
the signal, for all credibility level. On the left: the plot of (11); on the right: the plot of the derivative
of (11) with respect to the SCI. We observe that larger SCI corresponds to larger number of bits
required to encode the true value of the parameter of interest given the observation.
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We aim to drive this discussion in the context of comparing the quality of two distinct measurement
processes for inferring one quantity of interest. Formally, we denote these two measurements by
x1 ∈ X1 and x2 ∈ X2 and the quantity of interest by ϕ ∈ Φ.

Assuming a fixed marginal distribution p(ϕ) over the parameter, the two measurement processes
p(x1 | ϕ) and p(x2 | ϕ) define two joint distributions p(x1, ϕ) and p(x2, ϕ). Considering a discretized
space of parameters ϕ, the mutual information can be written as

I(ϕ,xi) = H(ϕ)−H(ϕ | xi), (10)

where I(ϕ,xi) is the mutual information and H the entropy. As the marginal entropy of the parameter
remains constant, it is clear that only the second term matters for comparing the information content of
the two measurement processes. The quantity H(ϕ | xi) can be interpreted as the average remaining
number of bits necessary to encode ϕ if we know xi. The average is taken over the joint distribution
induced by the marginal distribution of ϕ and the measurement process p(xi | ϕ).
From this interpretation, choosing the one with the highest mutual information is a well-motivated
criterion for choosing between two measurement processes. Said differently, we are looking for
measurement processes with the smallest H(ϕ | xi), the one leading to small uncertainty about the
correct value of ϕ.

We use an information theory point of view to explain why, similarly to mutual information maxi-
mization [20], aiming for the measurement process with the smallest SCI is a sound approach. Let
us consider the measurement process p(xi | ϕ) leading credible intervals with size S(α,xi) for a
certain credibility level α and observation xi. Similarly to what we do in practice to compute the SCI,
we discretize the space of parameters into N cells. The SCI is then defined as the minimal number of
cells required to cover the credible region at level α. From the SCI, we can say that the true value
of ϕ belongs to one of the S(α,xi) cells of the credible region with probability α or to one of the
N − S(α,xi) remaining cells with a probability 1− α. From this, we can bound the average number
of bits required to encode the true value of ϕ given the observation xi as a function of the SCI S and
the credibility level α as

N bits ≤ −α log2
α

S(α,xi)
− (1− α) log2

1− α

N − S(α,xi)
. (11)

Figure 10 shows the relationship between this bound and the credibility level α and SCI. We treat
SCI and the credibility α as independent quantities, as different measurement processes can lead to
different relationships between these two quantities. We must notice that given a credibility level α,
smaller SCI corresponds to better bounds. We can conclude that selecting models with the smallest
SCI for a given credibility level is a sound approach with a similar interpretation as making this
choice based on mutual information.

A.6 Whole-body hemodynamics model

A.6.1 Parameterization

We use a dataset of 4374 simulations from healthy individuals aged 25 to 75 [12]. By deriving
APW and simulating PPG waveforms from the blood flow and pressure data, we obtain signals
corresponding to a single heartbeat of varying lengths. The parameters of interest ϕ can be parameters
of the forward model, such as HR, LVET, Diameter, or quantity that are derived from the simulation,
such as PWV and SVR. In general, the parameters of interest and the observation do not constitute a
one-to-one mapping. This is especially caused by the presence of additional parameters treated as
nuisance ψ. In the dataset from [12], the following parameters vary from one simulation to the other:

• Heart function:

– Heart Rate (HR).
– Stroke Volume (SV).
– Left Ventricular Ejection Time (LVET). Note: LVET changes as a deterministic function

of HR and SV.
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– Peak Flow Time (PFT).
– Reflected Fraction Volume (RFV).

• Arterial properties:
– Eh = Rd(k1e

k2Rd + k3) where k1, k2 are constant and k3 follows a deterministic
function of age.

– Length of proximal aorta
– Diameter of larger arteries

• Vascular beds
– Resistance adjusted to achieve mean average pressure (MAP) distribution compatible

with real-world studies.
– Compliance adjusted to achieve realistic peripheral vascular compliance (PVC) com-

patible with real-world studies.

The interested reader will find further details in [12].

A.6.2 Measurement model

The dataset from [12] is made of individual beats, which differs from real-world data usually made of
a fixed-size segments. While pre-processing the real-world data to extract unique beat is feasible, it
may pose challenges to ensure this extraction is consistent with the simulated waves. Instead, we add
a measurement model that reduce the gap between the real-world and simulated data formats. We
first generate segments longer than 10 seconds by concatenating the same beat multiple times. Then,
we randomly crop time series into 8-second segments. This ensures that the posterior distributions
are defined for 8-second segments and accounts for all possible starting positions within the heartbeat.
Finally, we introduce a white Gaussian noise to the waveforms to make our analysis less sensitive to
the model misspecification. Appendix A.3 showcases these steps and the resulting waveforms.

A.7 Normalizing flows

We provide additional details on the normalizing flows used to model the posterior distributions. In
all our experiments, we apply the same training and model selection procedures. Moreover we use
the same neural network architecture for all experiments.

We rely on the open-source libraries PyTorch [46] and Normalizing Flows, a lightweight library to
build NFs built upon the abstraction of NFs as Bayesian networks from [65].

A.7.1 Training setup

We randomly divide the complete dataset into 70% train, 10% validation, and 20% test sets. We
optimize the parameters of the neural networks with stochastic gradient descent on (9) with the Adam
optimizer [30]. We use a batch size equal to 100, a fixed learning rate (= 10−3), and a small weight
decay (= 10−6). We train each model for 500 epochs and evaluate the validation loss after each
epoch. The best model based on the lowest validation loss was returned and used to obtain the results
presented in the paper. All data are normalized based on their standard deviation and mean on the
training set. For the time series, we compute one value across the time dimension.

A.7.2 Neural network architecture

We use the same neural network architecture for all the results reported. It is made of a 3-step
autoregressive normalizing flow [45] combined with a convolutional neural network (CNN) to encode
the 8-second segments sampled at 125Hz (∈ R1000). The CNN is made of the following layers:

1. 1D Convolution with no padding, kernel size = 3, stride = 2, 40 channels, and followed by
ReLU;

2. 1D Convolution with no padding, kernel size = 3, stride = 2, 40 channels, and followed by
ReLU;

3. 1D Convolution with no padding, kernel size = 3, stride = 2, 40 channels, and followed by
ReLU;
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4. Max pooling with a kernel = 3;
5. 1D Convolution with no padding, kernel size = 3, stride = 2, 20 channels, and followed by

ReLU;
6. 1D Convolution with no padding, kernel size = 3, stride = 2, 10 channels, and followed by

ReLU,

leading to a 90 dimensional representation of the input time series. The 90-dimensional embedding
is concatenated to the age and denoted h. Then, h is passed to the NF as an additional input to the
autoregressive conditioner [45, 65].

The NF is made of a first autoregressive step that inputs both the 91 conditioning vector h and
the parameter vector and outputs 2 real values µi(ϕ<i,h), σi(ϕ<i,h) ∈ R per parameter in an
autoregressive fashion. Then the parameter vector is linearly transformed as ui = ϕie

σi(ϕ<i,h) +
µi(ϕ<i,h). The vector u := [u1, . . . , uk] is then shuffled and passed through 2 other similar
transformations, leading to a vector denoted z, which eventually follows a Gaussian distribution
after learning [44]. The 3 autoregressive networks have the same architecture: a simple masked
multi-layer perceptron with ReLu activation functions and 3 hidden layers with 350 neurons each.
We can easily compute the Jacobian determinant associated with such a sequence of autoregressive
affine transformations on the vector ϕ and thus compute (9).

We can easily show that the Jacobian determinant is equal to the product of all scaling factors eσi .
We also directly see that ensuring these factors are strictly greater than 0 enforce a continuously
invertible Jacobian for all value of ϕ and thus continuous bijectivity of the associated transformation.

As mentioned, under perfect training, the mapping from Φ to Z defines a continuous bijective
transformation that transforms samples from ϕ ∼ p(ϕ | h) into samples z ∼ N (0, I). As the
transformation is bijective, we can sample from p(ϕ | h) by inverting the transformation onto samples
from N (0, I). As the transformation is autoregressive, we can invert it by doing the inversion
sequentially for all dimensions as detailed in [44, 65, 45].
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