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Abstract

We present a novel, data-driven closure model for Reynolds-averaged Navier-Stokes
(RANS) equations which consists of two-parts. A parametric one, which a tensor
basis neural-network and a non-parametric one which makes use of latent, random
variables in order to capture aleatoric model uncertainty. Our fully Bayesian
formulation, incorporating sparsity-inducing priors, identifies areas of the problem
domain where the parametric closure falls short, requiring stochastic corrections to
the Reynolds stress tensor. Training employs sparse, indirect data such as mean
velocities and pressures, in contrast to the majority of alternatives which require
direct, Reynolds stress data. For inference and learning, we employ Stochastic
Variational Inference, facilitated by an adjoint-based differentiable solver. This
end-to-end differentiable framework can ultimately yield accurate, probabilistic
predictions for flow quantities, even in regions with model errors, as exemplified
by the backward-facing step benchmark problem.

1 Introduction

The simulation of turbulence in fluid dynamics necessitates very fine spatio-temporal resolution of
the Navier-Stokes equations, known as Direct Numerical Simulation (DNS), which is prohibitively
expensive for real-world applications. Reynolds-averaged Navier-Stokes (RANS) models offer a
more efficient way to predict mean flow properties and are the industry standard [1]. The accuracy
of RANS predictions hinges upon the closure model adopted for the Reynolds stress (RS) tensor
which formally depends on the unresolved velocity fluctuations [2, 3]. Multiple closure models
have been proposed [4, 2] and in recent years, data-driven strategies have risen in prominence [5,
6, 7, 8]. We propose an intrusive, probabilistic framework which makes use of the RANS solver
in the learning process and can make use of sparse, indirect mean velocity/pressure observations.
To enable the learning, we developed an adjoint-based, differentiable RANS solver. Availability of
the physics-based simulator gradients is a common problem across fields whenever it is involved
in learning/inference tasks [9]. We utilize a parametric closure model of the RS tensor [10], to
which a stochastic discrepancy tensor field is added in order to account for the insufficiency of the
parametric part. As we demonstrate on a separated flow benchmark case, the framework proposed
outperforms the baselines in terms of predictive accuracy while having reduced data requirements
and simultaneously proving probabilistic predictive bounds.

This work shares similarities with data-driven models as in [10, 7, 11, 12, 13], which, nevertheless,
do not involve the RANS solver in the training process (hence full field RS data is used for training).
[14, 15, 16] reported inconsistency issues which might arise when the solver is not involved in the
training process, leading to less satisfactory velocity/pressure predictions. Additionally, full-field RS
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data is required as opposed to our sparse data requirements. Recently, [17, 18, 19] incorporated the
RANS solver in the training, however they do not account for aleatoric, model uncertainty.

2 Methods

Problem Statement The RANS equations arise by time-averaging from the NS equations and
involve time-averaged pressure and velocity fields. They are however unclosed due to the so-called
Reynolds-Stress (RS) tensor term τRS = −

〈
ũũT

〉
1, which depends on the cross-correlation of the

unresolved, fluctuating part of the velocity ũ. [2] The most commonly employed strategy, i.e. the
Linear Eddy Viscosity model (LEVM), assumes that τRS can be expressed as a linear function of
mean velocity and some other turbulent flow quantities, such as the turbulent kinetic energy k and
the turbulent energy dissipation ϵ (e.g. the k − ϵ model [20]), or the specific dissipation ω (e.g. the
k − ω [21]). Although LEVMs provide accurate results for a range of flows, they can give rise to
predictive inaccuracies which are particularly prominent when trying to capture flows with significant
curvatures, recirculation zones, separation, reattachment, anisotropy etc [2, 22].

2.1 Probabilistic, data-driven differential framework

Upon discretisation using e.g. a finite element scheme, one can express the RANS equations in
residual form as:

G(z) = Bτ ; or, R(z; τ ) := G(z)−Bτ = 0 (1)

where z = [u,p]T summarily denotes the discretized mean velocity u and pressure p fields and τ
the discretized RS field. E.g. for a two-dimensional flow domain z ∈ RN×3, τ ∈ RN×3 where N
is the number of grid points. We denote with G the discretized, non-linear operator accounting for
the advective and diffusive terms as well as the conservation of mass, and with B the matrix (i.e.
linear operator) arising from the divergence term on the RS tensor. Traditional, data-driven strategies
postulate a closure e.g. τθ(z) dependent on some tunable parameters θ, which they determine either
by assuming that reference Reynolds-stress data is available from DNS simulations [13, 10, 23, 11]).
Apart from the heavier data requirements, it does not guarantee that the trained model would yield
accurate predictions of z [16] as even small errors in τ might get amplified when solving Eq. (1).
In contrast, we propose to learn the τθ(z) using indirect and noisy mean field observations which
necessitates parametric sensitivities, i.e. a differentiable solver, for training. Another critical aspect
pertains to uncertainty quantification. Parametric uncertainty which is of epistemic origin has been
extensively studied (e.g.,[24, 25, 26]). In the present work, we address the issue of aleatoric, model
uncertainty in the closure equations. In particular, we augment the parametric closure model τθ(u)
with a set of latent (i.e. unobserved) random variables ϵτ which are embedded in the model equations
and which quantify model discrepancies at each grid point. In reference to the discretized RS vector
τ in Eq. (1), we propose to use τ = τθ(u) + ϵτ .

2.2 Models, data, likelihood and posterior

For the parametric part of the closure, i.e. τθ(u), we make use of the invariant neural network
architecture proposed by [10] which relates the anisotropic part of the RS tensor with the symmetric
and antisymmetric components of the velocity gradient tensor. By using tensor invariants, the neural
network is able to achieve both Galilean invariance as well as rotational invariance. For the NN
parameters θ, as a prior we employ a Student’s T -distribution centered at zero. For the latent variables
ϵτ , we propose a dimension-reduced representation that facilitates inference tasks given the high
values that N takes in most simulations. In particular, we represent ϵτ = WEτ , where the entries of
W are 1 if a corresponding grid point (row of W ) belongs in a certain subdomain (column of W )
and 0 otherwise. The vector Eτ = {Eτ,J}Nd

J=1 contains therefore the RS discrepancy terms for each
of the Nd subdomains. For a two-dimensional flow, dim(Eτ,J) = 3. As there would be an infinity of
combinations of θ and ϵτ /Eτ that could fit the data equally well, we make use of a sparsity-inducing
Bayesian prior [27] based on the Automatic Relevance Determination (ARD) [28] , in combination

1⟨·⟩ denotes the time average of the arguments.
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with the Gamma hyperprior. In particular:

p(Eτ |Λ) =

Nd∏
J=1

N
(
Eτ,J |0, diag(ΛJ)

−1)
)
; p(Λ) =

Nd∏
J=1

L∏
ℓ=1

Gamma(ΛJ,ℓ |α0, β0) (2)

where ΛJ,ℓ denotes the ℓth entry (e.g. L = 3 for two-dimensional flows) of the vector of precision
hyperparameters in subdomain J . We note that when ΛJ,ℓ → ∞, then the corresponding model
discrepancy term Eτ,J,ℓ → 0. The resulting prior for Eτ arising by marginalizing the hyperparameters
Λ is a light-tailed, Student’s t-distribution [29] that promotes solutions in the vicinity of 0 unless strong
evidence in the data suggests otherwise. For training, we consider M ≥ 1 flow settings and denote
the observations collected as D = {ẑ(m)}Mm=1. These consist of time-averaged velocity/pressure
values where dim(ẑ(m)) = Nobs. We utilize a Gaussian likelihood given by:

p(D | θ, ϵ(1:M)
τ ) =

M∏
m=1

p(ẑ(m) | θ, ϵ(m)
τ ) =

M∏
m=1

N (ẑ(m) | z(θ, ϵ(m)
τ ),Σ) (3)

where z(θ, ϵ
(m)
τ ) denotes the solution vector of the discretized RANS equations and the covariance

is expressed as Σ = diag(σ2
1 , · · · , σ2

3Nobs
). By combining the priors with the likelihood model, we

arrive at the following posterior:

p(θ,E(1:M)
τ ,Λ| D) ∝

(
M∏

m=1

p(ẑ(m) | θ,E(m)
τ ) p(E(m)

τ |Λ)

)
p(θ) p(Λ) (4)

2.3 Learning and predictions

To identify the latent variables and unknown variables in the probabilistic model proposed, we advo-
cate the use of Stochastic Variational Inference (SVI) [30] which results in a closed-form approxima-
tion of the posterior p(θ,E(1:M)

τ ,Λ|D). Given a family of probability densities qξ
(
θ,Λ,E

(1:M)
τ

)
parametrized by ξ, we find the optimal, i.e. the one that is closest to the exact posterior in terms of
their Kullback-Leibler divergence, by maximizing the Evidence Lower Bound (ELBO) F(ξ) [31]. We
employ a mean-field assumption [32] for the approximate posterior qξ. The updates of the parameters
ξ are carried out using derivatives of the ELBO. These entail expectations with respect to qξ which are
estimated (with noise) by Monte Carlo in conjunction with the ADAM stochastic optimization scheme
[33] and the reparametrization trick [34]. If we summarily denote with η = {θ,Λ,E

(1:M)
τ } and

given that the approximate posterior qξ(η) can be represented by deterministic transform η = gξ(ϕ),
where ϕ follows a known density q(ϕ), the expectations involved in the ELBO and, more importantly,
in its gradient can be rewritten as:

∇ξF(ξ) = Eq(ϕ) [∇ξgξ(ϕ)∇η (log p(D,η)− log qξ(η))] (5)

One observes that derivatives of the log-likelihood with respect to η are needed. This in turn would
imply derivatives of the RANS-model outputs with respect to {θ,Λ,E

(1:M)
τ } which appear indirectly

through τ . Such derivatives are rendered possible by using an adjoint formulation of the discretized
RANS model that yields in effect a differentiable solver (details in Appendix B).

Probabilistic, predictive estimates of any quantity of interest related to the RANS-simulated flow
can be produced using the trained model. In particular, one can obtain a predictive, posterior density
p(z|D) on the whole solution vector z of the RANS equations as follows:

p(z|D) =

∫
p(z|Eτ ,θ) p(Eτ |Λ)p(θ,Λ|D) dEτ dθ dΛ (6)

The third of the densities in the intergrand is the posterior which is substituted by its variational
approximation i.e. qξ with its optimal parameter values ξ. The second represents the prior model
prescribed in Eq. (2). Finally the first is simply a Dirac-delta that corresponds to the solution of the
RANS equations obtained when using a closure model of the form τ = τθ(u) +WEτ . Owing to
the intractability of the integral, a Monte Carlo scheme is employed.
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3 Numerical Illustrations

We select the backward facing step configuration (Fig. (1)) in order to assess the proposed modeling
framework. This is a classic benchmark problem that has been widely used for studying the per-
formance of turbulence models as it poses significant challenges due to the complex flow features
such as flow separation, reattachment and recirculation [35]. Following boundary conditions/inputs
are prescribed: constant inlet bulk velocity ub = 1 in the x-direction on the left boundary, no-slip
condition on top/bottom boundary and zero traction at the outflow boundary. The implementation
of the differentiable FE solver is detailed in Appendix. A. The k − ϵ model is choosen as the
baseline RANS model as its the most widely used RANS model in industrial applications. For training
data generation, LES is performed for various Re number (Re = [300, 700, 900, 1100]). In the
subsequent results, mean velocity/pressure observations at approximately 8% of the grid points of the
RANS-FE mesh were used. For the learning, the popular machine learning library PyTorch [36]
was used. The ELBO maximization was performed using the ADAM scheme [33] with learning rate
being 10−6. The neural network architecture employed for the parametric RS model was identical to
the one suggested by [10].

We assessed the trained model for the test-case with Re = 500 which was not contained in the
training data. We observe from Fig. (2) that even though no RS training data was provided, the τθ
model is able to capture the features, hence the high precision in some areas (e.g., downstream). In
the regions the model is under-performing, the precision attains small values, thus allowing the ϵτ to
provide a correction to the RS tensor. The impact of this correction is evident in Fig. (1), wherein
the mean field predictions agree well with the reference LES and the predictive bounds envelop the
LES values in most area, as opposed to the baseline k − ϵ. Furthermore, Table 1 compares our model
against others for the reattachment length, a key parameter in the study of separated flows [37], which
gives the distance from the step where the flow separates to the point at which it reattaches. We
observe while previous works deviated significantly from the reference LES value, our probabilistic
prediction is able to envelop it.

Figure 1: Section plots at different locations x/h comparing the LES and Baseline RANS mean fields
with the posterior predictive mean ( solid black line) and ±2× standard deviation (shaded area). top -
velocity in x-direction (u), middle - velocity in the y-direction (v), bottom - pressure (p).

Model xreattach[x/h]

LES (reference) 9.10
Biswas et al. [37] 8.9
Baseline RANS 5.61
Geneva et al.[13] 5.52
proposed model 10.06 ± 1.21

Table 1: Predictions of reattachment
length (x/h) of the primary recirculation
region behind the backward-facing step
(expansion ratio H/h = 2). ± : 3× s.d

Figure 2: The inferred hyper-parameter Λ of the (re-
duced) discrepancy tensor Eτ corresponding to the
three components Eτ,11, Eτ,12 and Eτ,22
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4 Conclusions

The model proposed, which incorporates the RANS solver in the training process, uses sparse
velocity/pressure observations instead of the full field Reynolds stress observations and employs
a stochastic, model discrepancy term, leads to better predictions while quantifying the predictive
uncertainties. This is demonstrated in the backward-facing step benchmark problem while comparing
our approach to baseline RANS, high-fidelity LES and other data-driven model(s).

5 Broader Impact Statement

Turbulence is a crucial physical characteristic of a broad range of fluid flows. Grasping this occurrence
is vital for intricate designs, environmental simulations, and a myriad of engineering uses. Over the
last few decades, computational capabilities have surged significantly, allowing for high-resolution
simulations such as direct numerical simulations (DNS) for various turbulent flows. Nevertheless,
approximations like Reynolds-averaged Navier–Stokes (RANS) persist as indispensable for industrial
purposes, where precision heavily relies on turbulence closure models.

The present research demonstrated that including the RANS solver in the training process can improve
the prediction quality even with limited training data. This underscored the impact augmentation of
training data with information that can be extracted from the physical simulator can have. This deep
integration of differentiable and probabilistic programming frameworks involving physical simulators
is the need of the hour for scientific machine learning. This can revolutionize many fields in physics
and engineering like fluid mechanics, molecular dynamics, particle physics, cosmology, material
science, drug discovery, to name a few. Furthermore, we demonstrated a method to account for the
involved uncertainties, that are unavoidable when any sort of modeling or learning with finite data is
involved.

We do not see any direct ethical concerns associated with this research. The impact on society is
primarily through the over-arching context of research using machine learning to improve our general
understanding of fluid turbulence.
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Appendix

A Differentiable RANS solver

In the present study, the RANS equations (Eq. (1)) are numerically solved using the finite element
discretization, implemented in the open source package FEniCS [38], due to its innate adjoint solver
[39]. The discrete equations are obtained by representing the solution and test functions in appropriate
finite dimensional function spaces. In particular, we employed the standard Taylor-Hood pair of
basis functions with polynomial degree one for the pressure interpolants and two for the velocities.
This choice is made to avoid stability issues potentially arising from the interaction between the
momentum and continuity equations.

The turbulence scaling terms, k and ϵ, are obtained by solving the respective standard transport
equations [2, 4]. Symmetry is enforced in the RS tensor, i.e. τxy and τyx are identical without
any redundancy in the representation. The discretized system is solved with damped Newton’s
method. For robustness and global convergence, pseudo-time stepping is used with the backward
Euler discretization [40]. As the Reynolds number is increased, the convection term dominates,
leading to stability [41].This elicits a need to add stabilization terms to the weak form, such as the
least-square stabilization, according to which the weighted square of the strong form is added to
the weak form residual. However, these extra terms have to be chosen carefully in order not to
compromise the correctness of the approximate solution. Classically, researchers added artificial
diffusion terms or a numerical diffusion by using upwind scheme for the convection term instead of
central diffusion. The extra infused term corrupted the solution quality. To avoid this, in practice, it
is common to use schemes like Streamline-Upwind Petrov-Gelarkin method (SUPG) and Galerkin
Least Squares (GLS). In the present study, we have utilized a self-adjoint numerical stabilisation
scheme which is an extension of Gelarkin Least Squares (GLS) Stabilisation called Galerkin gradient
least square method [42]. This amounts to adding a stabilization term to the residual weak form. For
additional details, interested readers are referred to [42, 41].

B Adjoint Formulation and Estimation of the Gradient of the ELBO

As discussed in Section 2.3, the SVI framework advocated, in combination with the reparametrization
trick, to arrive at the following ELBO F(ξ):

F(ξ) = E
qξ

(
θ,Λ,E

(1:M)
τ

)
log

p(D | θ,E(1:M)
τ ) p(E

(1:M)
τ |Λ) p(θ) p(Λ)

qξ

(
θ,Λ,E

(1:M)
τ

)
 (7)

The derivatives of the ELBO with respect to the variables which we summarily denoted by η =

{θ,Λ,E
(1:M)
τ }, i.e. (as in Eq. (5)):

∇ξF(ξ) = Eq(ϕ) [∇ξgξ(ϕ)∇η (log p(D,η)− log qξ(η))] (8)

where from Eq. (4):

log p(D,η) = log
(
p(D | θ,E(1:M)

τ ) p(E
(1:M)
τ |Λ) p(θ) p(Λ)

)
=
(∑M

m=1 log p(ẑ
(m) | θ,E(m)

τ ) + log p(E
(m)
τ |Λ)

)
+ log p(θ) + log p(Λ)

(9)
The form of the (log-)priors p(E(m)

τ |Λ) , p(θ), p(Λ) (Eq. (2)) as well as of the approximate posterior
qξ(η) suggest that most of these derivatives can be analytically computed with the exception of the
ones involving the log-likelihoods, i.e.:

ℓ(m)(θ,E(m)
τ ) = log p(ẑ(m) | θ,E(m)

τ ). (10)
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This is because each of these terms depends implicitly on θ,E
(m)
τ through the output of the RANS

solver z(θ, ϵ(m)
τ = WE

(m)
τ ) with the closure model for the discretized RS tensor field suggested by

τ = τθ(u) +WE
(m)
τ . In view of the governing equations (Eq. (1)), we explain below how adjoint

equations can be formulated that enable efficient computation of the aforementioned derivatives of
the log-likelihoods.

In particular, and if we drop the superscript m for each term in the log-likelihood in order to simplify
the notation, we formulate a Lagrangian with the help of a vector λ of Lagrangian multipliers, i.e.:

L = ℓ+ λT (G(z)−Bτ ) (11)

where G, B, τ and z are as defined in Section (2.1).Differentiating with respect to τ yields:

dL
dτ

=
∂ℓ

∂z

dz

dτ
+

dλT

dτ
(G(z)−Bτ ) + λT

(
∂G
∂z

dz

dτ
−B

)
=

(
∂ℓ

∂z
+ λT ∂G

∂z

)
dz

dτ
− λTB (12)

We select λT so that the first term in parentheses vanishes, i.e. :

∂ℓ

∂z
+ λT ∂G

∂z
= 0 or,

(
∂G
∂z

)T

λ = −
(
∂ℓ

∂z

)T

(13)

The linear system of equations was solved using a direct LU solver. The vector λ found was
substituted in Eq. (12) in order to obtain the desired gradient which is given by:

dL
dτ

=
dℓ

dτ
= −λTB (14)

Subsequently, and by application of the chain rule we can obtain derivatives with respect to θ as:

dℓ

dθ
=

∂ℓ

∂τ︸︷︷︸
Adjoint
model

∂τ

∂θ︸︷︷︸
NN

auto-diff

(15)

where ∂τ/∂θ was efficiently computed by back-propagation, which is a reverse accumulation
automatic differentiation algorithm for deep neural networks that applies the chain rule on a per-layer
basis. We note that since the parameters θ are common for each likelihood ℓ(m) the aforementioned
terms would need to be added as per Eq. (9).

Similarly by chain rule, the gradient with respect to the vector Eτ is given by:

dℓ

dEτ
= W T dℓ

dτ
(16)

We note finally that the expectations involved in the ELBO and its gradient (Eq. (5)) are approximated
by Monte Carlo i.e.:

F(ξ) ≈ 1

K

(
K∑

k=1

(
M∑

m=1

ℓ(m)(θ,E(m,k)
τ ) + log p(E(m,k)

τ |Λ)

)
+ log p(θ) + log p(Λ)− log qξ(θ,Λ,E(m,k)

τ )

)
(17)

where:
ϕ(m,k) ∼ N (0, I), E(m,k)

τ = gξ(ϕ
(m,k)), (18)

and:

∇ξF(ξ) ≈ 1

K

K∑
k=1

∇ξgξ(ϕ
(k))∇η

(
log p(D,η(k))− log qξ(η

(k))
)

(19)

where η(k) = gξ(ϕ
(k)).
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