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Abstract

We investigate the possibility of learning the representations of cosmological
multifield dataset from the CAMELS project. We train a very deep variational
encoder on images which comprise three channels, namely gas density (Mgas),
neutral hydrogen density (HI), and magnetic field amplitudes (B). The clustering
of the images in feature space with respect to some cosmological/astrophysical
parameters (e.g. Ωm) suggests that the generative model has learned latent space
representations of the high dimensional inputs. We assess the quality of the latent
codes by conducting a linear test on the extracted features, and find that a single
dense layer is capable of recovering some of the parameters to a promising level of
accuracy, especially the matter density whose prediction corresponds to a coefficient
of determination R2 = 0.93. Furthermore, results show that the generative model is
able to produce images that exhibit statistical properties which are consistent with
those of the training data, down to scales of k ∼ 4h/Mpc.

1 Introduction

The data deluge which will be coming from current and different surveys at different wavelengths,
e.g. DESI [Aghamousa et al., 2016], SKA [Dewdney et al., 2009, Weltman et al., 2020] and HIRAX
[Newburgh et al., 2016], will improve our understanding of the large-scale structure. In order to
uncover patterns and anomalies in the data from those surveys, advanced techniques will be required.
Deep networks that are considered for parameter inference at the field level can help extract the
salient features from high dimensional data (e.g. 2D images). Although cosmological simulations
are useful for training those convolutional neural network (CNN) based methods to recover the
underlying cosmology and astrophysics [Gupta et al., 2018, Ribli et al., 2019, Fluri et al., 2019,
Villaescusa-Navarro et al., 2021a, Andrianomena and Hassan, 2023], extracting the relevant features
from noisy data in real world scenario still proves to be challenging for those networks. One way to
tackle that issue is to train the networks with noisy mock data [e.g. Hassan et al., 2020], making them
more robust when predicting inputs in the presence noise. However, systematics from real surveys
can be hard to model, which still poses a problem. Another approach, which is less sensitive to
complex noise, is to learn the representations of the high dimensional data. In general, representation
learning which consists of extracting the salient features from the inputs does not rely on the labels
of the latter and is suitable for discovering patterns and anomalies. Self-supervised learning [Chen
et al., 2020, Grill et al., 2020, He et al., 2020, Chen and He, 2021] has been proven to be able to
successfully extract useful representations of images (e.g. CIFAR10). Our main objective in this
work is to learn the latent codes of the multifield images which are composed of three 2D maps
(channels) of different physical fields. This is crucial in preparation for analyzing and understanding
the unlabelled data from different cosmological surveys. In contrast with self-supervised learning
based approaches, our method – a variant of variational autoencoder (VAE) – is simultaneously
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trained to extract important information from the input, and generate new images that have both the
quality and statistical properties that are comparable to the those of the training data. Previous works
also used VAE models to analyze cosmological data [e.g. Tröster et al., 2019, Yi et al., 2020, Thorne
et al., 2021, Horowitz et al., 2022].

2 Method

2.1 Data

We consider the public CAMELS Multifields Dataset (CMD) [Villaescusa-Navarro et al., 2022] which
was obtained from running state-of-the art hydrodynamic simulation IllustrisTNG from the CAMELS
Project [Villaescusa-Navarro et al., 2021b] . In CMD, there are 13 different fields representing a region
of 25× 25× 5 (h−1Mpc)3 at z = 0. In this proof of concept, each instance in our training/testing
dataset comprises three channels corresponding to gas density (Mgas), neutral hydrogen (HI) and
magnetic fields magnitude (B). The three different fields (or channels) in each example describe the
same physical region with the same underlying cosmological Ωm and σ8 and astrophysical parameters
(ASN1, ASN2, AAGN1, AAGN2) characterizing the supernova and active galactic nuclei feedbacks.
The training, validation and test sets contain 13,000, 1,000 and 1,000 maps of 256 × 256 pixels2
respectively.

2.2 Algorithm

In our analyses, we consider the variational autoencoder prescribed in Child [2020]. VAE [Kingma
and Welling, 2013] comprises an encoder qϕ(z|x), a decoder pθ(x|z) and a prior pθ(z). The training
of the two networks ϕ and θ consists of maximizing the evidence lower bound (ELBO) [Kingma and
Welling, 2013]

ELBO = Ez∼qϕ(z|x)logpθ(x|z)−DKL(qϕ(z|x)||pθ(z)), (1)

where the first term is the reconstruction loss, whereas the second term is the Kullback-Leibler
divergence, measuring the dissimilarity between the approximate posterior qϕ(z|x) and the prior
pθ(z). Child [2020] introduced a hierarchical VAE, which is composed of many stochastic layers
of latent variables, such that both the approximate posterior and the prior, which generate the latent
variables, are more expressive. The latent variables which are conditionally dependent on each other
(like in autoregressive models) have different resolutions according to

pθ(z) = pθ(z0)

N∏
k=1

pθ(zk|zk−1),

qϕ(z|x) = qϕ(z0|x)
N∏

k=1

qϕ(zk|zk−1, x), (2)

where N is the number of layers, and qϕ(·) and pθ(·) are diagonal Gaussian distributions. It is worth
noting that, unless otherwise stated, the learned representations (or latent codes) in our analyses
denote the latent variables with the lowest resolutions (vector of length 256). The encoder comprises
many stages of stacked residual blocks and the downsampling after the last residual block in one
stage is achieved with an average pooling. A residual block has 4 convolutional layers. A top-down
block uses one residual block for the prior, one residual block for the posterior, one convolutional
layer for the latent variable and a last residual block at its ouput. The decoder has the same number
of stages as the encoder, and each of them is composed of stacked top-down blocks. The upsampling
after the last top-down block at a given stage is done by using nearest neighor (see the schematic
diagram in Figure 3 of Child [2020]). During training, the conditionals in equation 2 are achieved by
mixing (via concatenation) the output of the last residual block at a given stage of the encoder with
the inputs of all top-down blocks at the corresponding stage of the decoder. We consider 6 stages with
(3, 3, 2, 2, 2, 2) number of residual blocks for the encoder, and (3, 3, 2, 2, 2, 2) number of top-down
blocks for the decoder. We train the model for 300 epochs using RMSprop optimizer with learning
rate = 0.00002, momentum = 0.9 and weight decay = 10−4, in batches of 4 instances on a NVIDIA
GeForce GTX 1080 Ti. Each epoch takes about 26 minutes.
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Figure 1: Visualization of the learned representations using t-SNE. The color coding in each panel
denotes the parameter values.
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Figure 2: Comparing field images of a new instance generated by the trained decoder on the top row
with those of a real instance at the bottom row from the test set. Each field of both real and fake
instances is shown in the same column.

3 Results

To investigate the learned latent codes during training, the whole dataset is fed into the encoder in
order to extract the features which consist of vectors of length 256. For visualization, the features
are further projected into a two dimensional subspace using a dimensionality reduction method,
t-distributed stochastic neighbor embedding (t-SNE). Figure 1 shows the clustering of the data points
in 2D space. Each point in each panel is color-coded according to the value of the underlying
parameter, and each panel presents the clustering with respect to one parameter, e.g. Ωm. Overall, the
clustering of the latent representations is visible with respect to the cosmological parameters (Ωm,
σ8) and the supernova feedback parameters (ASN1, ASN2), although the trend related to the AGN
feedback parameters is very weak or non-existent. In other words, feature vectors associated with
roughly the same value of any of those four parameters tend to be clumped together in the embedding
space. This is indicative of the ability of the generative model to learn the latent codes of the inputs.

For the linear test, the new dataset composed of the features extracted (vector of length 256) from
the entire dataset is similarily split into training, validation and testing with 13,000, 1,000 and 1,000
examples respectively. A single dense layer without any activation is trained and tested on the
learned representations for 200 epochs, using Adam optimizer with a learning rate of 0.0025. We
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Figure 3: Top row: average cross-power spectrum between the fields for both the test images (dashed
blue) and generated images (solid red) as a function of wavenumber k. Bottom row: average auto-
power spectrum of each field in the test images (dashed blue) and in the fake images (solid red). In
all cases, the shaded area denotes the standard deviation of a power spectrum, blue and red for the
real and fake respectively.

use coefficient of determination R2 to assess the performance of the single layer network, and obtain
R2 = 0.93, 0.64, 0.72, -0.01, 0.85, 0.20 for Ωm, σ8, ASN1, AAGN1, ASN2 and AAGN2 respectively.
Results suggest that the latent space representations of the images still carries relevant information for
the feed-forward neural network to recover some parameters to a relatively good accuracy (R2 > 0.7).
The recovery of the matter density Ωm corresponds to the highest accuracy R2 = 0.93, which is
consistent with the most apparent clustering of data points of similar Ωm values. The challenge related
to the predictions of the AGN feedback parameters was also highlighted in Villaescusa-Navarro et al.
[2021a].

From sampling in the latent space, the model is capable of generating new examples which are
similar to the training dataset using the decoder. Field images of a real instance from the test set are
qualitatively compared with those of a new instance generated by the decoder in Figure 2. Visually,
the quality of the generated images, exhibiting the topological features like voids, filament, halos
and bubbles, is comparable with that of the data. However the fake images tend to be slightly blurry,
which points toward the fact that capturing the small scale features is challenging to our model. To
investigate the statistical properties of the generated instances, we compute: the average (P̄XX(k))
and standard deviation (σPXX(k)) of auto-power spectrum of each channel of all images in the test set,
and both average (P̄XY(k)) and standard deviation (σPXY(k)) of the cross-power spectrum between
channels of all the test instances. We plot P̄XX(k) for each field at the bottom row of Figure 3. The
real and fake power spectra are in good agreement down to k ∼ 4h/Mpc. This comes to corroborate
the fact that the generated images are a bit blurred, causing their power spectra to be lower than
those of the real images on smaller scales. The consistency between the average cross-power spectra
between channels of the real and generated instances up to k ∼ 5h/Mpc (Figure 3 top row) indicates
that the channels of the generated samples are consistent with one another, i.e. the three field images
describe the same physical region. The clustering properties of the fake maps demonstrate that the
generative model is capable of producing maps that mimic the training data.

4 Conclusion

We have demonstrated in this work that meaningful latent space representations of CAMELS multi-
field dataset can be learned using Very Deep Variational AutoEncoder (VDVAE), which is a generative
model. The latent codes, which still carry useful information, can be used for some downstream task
such as recovering the cosmological and some astrophysical parameters of the maps to a relatively
good accuracy. The new maps generated by the model are in good agreement with the data up to a
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level of high frequency, as evidenced by the consistency between the cross/auto-power spectra of fake
and real images for a wavenumber k ≤ 5h/Mpc. This limitation of the model can be addressed by
further fine-tuning the decay of the KL-divergence part of the loss function, or increasing the model
capacity or the combination of the two. For future work, a normalizing flow based model can be
trained on the latent codes. This will provide the likelihood of the inputs, which is very important for
parameter inference or out-of-distribution task. In order to investigate the robustness of the learned
representations, the trained model can be tested on different datasets, such as SIMBA.
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