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Abstract

A central operation in geometric graph neural networks (GNNs) is the equivariant
pairwise embedding function, which encodes the local environment of each node as
a learned representation. In this work, we examine the role of pairwise embedding
and consider a series of generalizations of its functional form beyond previous work.
The new embeddings that we design considerably advance the state of the art in
challenging distributions: as a highlight, when applied as an interatomic potential,
we achieve a 29% relative reduction of force errors on diverse allotropes of lithium-
intercalated carbon with a 4-fold reduction in parameter count. Furthermore, we
demonstrate improved transferability in molecular datasets by varying the locality
of the network according to the depth of the representation.

1 Introduction

In physical sciences, machine learning often deals with graph-structured data that are embedded in
vector spaces, known as geometric graphs [1]. Geometric graph neural networks are designed to
handle these data efficiently by imposing relevant inductive biases, such as equivariance or invariance
to permutation, as well as equivariance under the action of other groups, such as the Euclidean (E(3))
group of rotations, reflections, and translations [2]. The MACE architecture [3] has proven to be
state of the art for a wide variety of tasks in fields as distinct as atomistic modeling, computer vision,
and particle physics [4]. It has been shown that most of the existing geometric GNN architectures
correspond to hyperparameter choices within the MACE design space [5]. Unlike other geometric
GNNs, MACE allows control of the body order separately from the depth of the network [6].

In this paper, we explore architectural choices for geometric GNNs with the goal of obtaining
improved performance on atomistic data. We report state-of-the-art results for a number of challenging
datasets, often with a reduction in parameter count. Concretely, we make the following contributions:

• We show that equipping the embedding functions at different layers of the network with
different degrees of locality enhances accuracy in a physically explainable manner.

• We demonstrate that applying geometric self-attention over the local receptive field results
in substantial reductions in generalization error and parametric complexity.
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2 Method

2.1 The MACE architecture

In a forward pass of the MACE model, initial node features h(0)
i are generated as linear projections

of one-hot vectors δzzi , and edges rij are obtained from the neighbor graph constructed with cutoff
radius rcut. Edge lengths ||rij || are expanded in a set of radial basis functions jn0 , often chosen as
Bessel or Gaussian functions, and edge directions r̂ij are expanded in a basis of spherical harmonics
Y m
l . To construct the edge embeddings, the expanded edge lengths are passed through an MLP

R(rij) = MLP(jn0 (||rij ||)) to generate a set of coefficients that parameterize an E(3)-equivariant
tensor product between the node features hj and the expanded edge directions. Collectively, this set
of operations defines the pairwise embedding function ϕ

(s)
ij of the ij’th edge at layer s:

ϕ
(s)
ij,kη1l3m3

=
∑

l1l2m1m2

Cl3m3η1,l1m1l2m2
R

(s)
kη1l1l2l3

(rij)× Y m1

l1
(r̂ij)h

(s)
j,kl2m2

(1)

Where k indexes feature channels, l,m index angular momenta, Cl3m3η1,l1m1l2m2 are Clebsch-
Gordan coefficients enforcing E(3) equivariance, and η indexes combinations of l,m which preserve
equivariance. The environment embedding A

(s)
i of node i at layer s is constructed by aggregating

edge embeddings over the local environment and linearly projecting:

A
(s)
i,kl3m3

=
∑
k̃,η1

W
(s)

kk̃η1l3

∑
j∈N (i)

ϕ
(s)

ij,k̃η1l3m3
(2)

Next, a tensor product is applied to the environment embedding ν times to increase the correlation
order, and the resulting features are symmetrized via tensor contraction with generalized Clebsch-
Gordan coefficients CLM

ην lm
.

B
(s),ν
i,ηνkLM =

∑
lm

CLM
ην lm

ν∏
ξ=1

A
(s)
i,klξmξ

(3)

Finally, the symmetrized high-order features B(s),ν
i are linearly projected and combined residually

with the node features from the previous layer to produce the node features of the next layer. Readout
functions are then defined to regress target quantities from node features.

2.2 An extended design space of pairwise embeddings

The design choices relevant to body-ordered equivariant networks include 1) the choice of symmetry
group (E(3) or SE(3) for MACE, or any reductive Lie group for G-MACE [4]); 2) the order ν of
the symmetrized tensor product; 3) the architecture of the readout functions; and 4) the architecture
of the pairwise embedding function ϕij . Given that the pairwise embedding function directly controls
the representation learned by the network, in this work, we focus on its design.

In 1, the MLP R(rij) is the only trainable component of ϕij , and it depends only on the edge distance,
such that ϕij depends only on rij and hj . Recent work [6] found benefit from augmenting ϕij

with nonlinear dependence on the ordered pair features (hi, hj). We consider pairwise embedding
functions of the extended form:

ϕ
(s)
ij ∝ (rij , h

(s)
i , h

(s)
j , {h(s)

p , ϕ
(s)
ip ∀p ∈ N (i)(s)}) (4)

Compared to 1, this form introduces dependence of the equivariant tensor product on arbitrary
functions of all nodes and edges in the environment, and further defines the extent of the local
environment (i.e. the set of neighbors N ) separately for each layer. We describe an implementation
of an embedding of this form in the following section.

2.3 Geometric attention

A number of recent works have proposed the incorporation of attention mechanisms into geometric
graph neural networks [7, 8, 9, 10]. Attention can be applied to neighboring nodes in the local
environment to amplify or suppress particular edges when aggregating the environment embedding [7].
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Figure 1: Physically motivated partitioning of receptive field. Comparison between two models
with the same total receptive field of 10 Å show that a receptive field partitioning with a cutoff of 3 Å
for the first layer and 7 Å cutoff for the second layer significantly outperforms using the same 5 Å
cutoffs for both layers (a). The data-set contains solvated aminio-acid (b). The improved performance
may be attributed to better separation of inter- and intra- molecular contributions (c). We show that
intra-molecular energy contributions due to changes of the internal coordinates of a water molecule
originate equally from the first and second layer, for the 5 Å, 5 Å model (d). In the case of the 3 Å,
7 Å partitioning, the intra-molecular contributions originate predominantly from the first layer.

To capture information about the geometry of the local environment, we compute attention weights
between the central node’s features and the pairwise embeddings of neighboring nodes:

α
(s)
ij,µ =

exp(⟨W (s)
Q,µh

(s)
i ,W

(s)
K,µϕ

(s)
ij ⟩)∑
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µ
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(6)

Where µ indexes separate parallel heads of attention, query and key operators WQ and WK project
equivariant features to a common reduced dimension,

⊕
indicates concatenation, and ⟨·, ·⟩ is an

equivariant inner product. Evaluating similarity between query and key features using an equivariant
inner product ensures the attention operation as a whole remains equivariant.

3 Layer-dependent locality

We illustrate how incorporating added flexibility in the pairwise embedding and graph structure
enhances transferability and facilitates learning in low-data regimes. The first kind of flexibility
we investigate is allowing for layer-dependent cutoff distances. Typically, for the task of learning
molecular energies and forces, message passing occurs on an identical graph across layers: given
an atomic point cloud, all atoms within a specified cut-off distance are connected with an edge. We
find that adopting a smaller cut-off for the initial layer and a larger one for the subsequent layers
yields a significant reduction in test error when training on solvated amino acids (Figure 1a). This
modification helps integrate the inductive bias of inter- and intra-molecular interactions.

Our training set consists of a subset of the molecular SPICE dataset [11]. We train two layer
MACE [3] models on four distinct solvated amino acids and water clusters. Comparing two models
with the same total receptive field of 10Å, we find that force and energy errors can be significantly

3



I II III IV

10.2x

Figure 2: Local attention improves generalization of MACE on the GAP20 carbon allotropes dataset.
Left: a rendering of all 4 learned attention patterns of the trained model for a representative atomic
environment in a defected graphite sheet. For this environment, heads I-III downweight all edges except the
central atom’s nearest neighbors, emulating the effect of a tigher cutoff radius. By contrast, head IV increases
the weight of next-nearest neighbors. Right: the distribution of force error outliers on the GAP20 test set.
Outliers are environments with a relative force error norm greater than the threshold on the x axis, shown from
101-103. Local attention reduces the occurance of the largest generalization errors by an order of magnitude.

Figure 2: Local attention improves generalization on the GAP20 carbon dataset. Left: a rendering
of all 4 learned attention patterns of the trained model for a representative atomic environment in a
defected graphite sheet. For this environment, heads I-III weighs down all edges except the central
atom’s nearest neighbors, emulating the effect of a tighter cutoff radius. In contrast, head IV increases
the weight of next-nearest neighbors. Right: the distribution of force error outliers on the GAP20
test set. Outliers are environments with a relative force error norm greater than the threshold on the
x axis, shown from 101 − 103. Local attention reduces the occurance of the largest generalization
errors by an order of magnitude.

reduced by choosing a 3Å and 7Å cutoff for the first and second layer respectively, when compared
to a standard equal partitioning of 5Å and 5Å.

We suggest that the observed improvement is a consequence of a more physically informed parti-
tioning of the receptive field, which facilitates the differentiation between inter- and intra-molecular
interactions. To substantiate this hypothesis, we evaluated a set of rattled single water molecules
using both models. As depicted in Figure 1d, in the 5Å, 5Å model, the first layer accounts for 51%
of the energy variation in the perturbed configurations, while in the 3Å, 7Å model, the contribution
from the first layer rises to 71%.

The training set comprises 500 configurations, placing it in the low-data regime for systems of
such complexity. This regime is particularly intriguing, especially in the context of water, where
state-of-the-art force fields are developed based on computationally demanding coupled cluster
calculations [12]. As such, incorporating a physical prior of the different length scales and interactions
into the model may prove pivotal in learning on clusters and predicting bulk water behavior.

4 Local attention

Table 1: Numerical errors and parameter counts for MACE models trained on GAP20 carbon and
lithium-carbon datasets. Energy and force validation RMSE are reported in meV/atom and meV/Å.

Model GAP20 C Li-C
Channels Params. E F Channels Params. E F

Baseline MACE, 3 Layers 64L3 616K 10.7 328.3 64L3 710K 13.9 462.4
+ Attention (4 Heads) 16L3 163K 8.6 257.9 16L3 176K 12.8 358.1

Having shown the benefits of carefully controlled locality, we investigate the learnable control of
the receptive field by constructing MACE networks with attention applied to the local environment.
As a first test, we turn to the GAP20 dataset of carbon allotropes, which contains highly diverse
carbon structures at a wide range of densities [13]. We find that a MACE network augmented with
four attention heads outperforms a strong baseline MACE network of the same feature dimension1on
GAP20 by 22% in validation force RMSE while using 73% fewer parameters (Table 1). Parametric
complexity is of acute concern for atomistic applications, as it directly affects the number of particles
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that can be modelled simultaneously for a given amount of processor memory. Notably, our proposed
model’s force RMSE is roughly 1/3 that of the GAP model released with the dataset. We also
investigate performance on a dataset of lithium-intercalated carbon structures derived from GAP20,
where an attention model with matched feature dimension and 1/4 as many parameters yields a 29%
improvement in force RMSE. Furthermore, for GAP20, we find that attention reduces the number of
large relative force errors ("holes" in the learned potential) observed over the test set (Figure 2, right).

In Figure 2, we visualize the attention pattern learned for a particular environment in the test set
on which the attention model has a force error residual roughly 48 times smaller than the baseline
MACE model (3.3 meV/Å vs. 160 meV/Å). We note that the pattern learned is both topologically
interpretable and nontrivial: for the environment in question, three of the four attention heads assign
high weight to nearest neighbors, whereas the last head assigns high weight to next-nearest neighbors.
This is suggestive of a role for attention in dynamically reducing the model’s effective cutoff radius,
incorporating a locality bias as appropriate to the chemical environment being considered. We leave
systematic investigation of the patterns learned by MACE augmented with geometric attention to
future work.

5 Conclusion

Our results indicate that the extensions to the MACE framework presented here allow interatomic
interactions to be better captured, either via the direct incorporation of prior physical intuition, or via
learnable sparsification of the atomic environment as a function of the local geometry. We expect
these new capabilities to be especially relevant for many-element datasets, such as the Open Catalyst
Project’s OC20 [14], where the combinatorial chemical space is inevitably sparsely sampled, and
cross-species interactions must be learned from few direct examples. We foresee that representations
constructed with variable locality, conditional on local chemistry, will be a crucial addition in this
setting.
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