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Abstract

Upcoming surveys are predicted to discover galaxy-scale strong lenses on the order
of 10°, making deep learning methods necessary in lensing data analysis. Currently,
there is insufficient real lensing data to train deep learning algorithms, but the
alternative of training only on simulated data results in poor performance on real
data. Domain Adaptation may be able to bridge the gap between simulated and
real datasets. We utilize domain adaptation for the estimation of Einstein radius
(O p) in simulated galaxy-scale gravitational lensing images with different levels
of observational realism. We evaluate two domain adaptation techniques - Domain
Adversarial Neural Networks (DANN) and Maximum Mean Discrepancy (MMD).
We train on a source domain of simulated lenses and apply it to a target domain of
lenses simulated to emulate noise conditions in the Dark Energy Survey (DES). We
show that both domain adaptation techniques can significantly improve the model
performance on the more complex target domain dataset. This work is the first
application of domain adaptation for a regression task in strong lensing imaging
analysis. Our results show the potential of using domain adaptation to perform
analysis of future survey data with a deep neural network trained on simulated data.

1 Introduction

Strong gravitational lensing is a powerful probe of astrophysics, as well as cosmology. Galaxy-scale
strong lensing systems in the Sloan Lens ACS (SLACS) [5] survey gave insights into the dark and
baryonic matter profiles in massive elliptical galaxies [6,[8]. In cosmology, strong lensing systems
have been used as an independent probe of the Hubble constant through time delays in multiple
images in the system [[10} 33]] and for constraining the dark energy equation of state [[15}132].

Upcoming large-scale astronomical surveys, including the Rubin Observatory’s Legacy Survey
of Space and Time (LSST)[23]], the Hyper Suprime-Cam Subaru Strategic Program (HSC)[3l],
Euclid[27]], and the Nancy Grace Roman Space Telescope > , will observe an unprecedented number
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of lensed systems. Collett [14] predicted that > 10° galaxy scale strong lensing systems will be
observed by LSST and Euclid. The large amount of data from these surveys will require much more
efficient analysis techniques, such as those utilizing machine learning (ML) techniques. Currently
discovered lensing systems are on the order of a thousand, which is inadequate to train many ML
algorithms, forcing researchers to use simulated datasets of various forms, such as in [38} 29} [36]. For
classification tasks, it has been shown that the inevitable gap between training and testing data causes
complex, large-parameter ML models trained on labeled simulation data to perform poorly (i.e.,
systematic biases) on new, unlabeled observational data [e.g.,[7]. The same issues with classification
are present in regression tasks, requiring an advancement to mitigate biases in deep learning analyses.

Domain adaptation (DA) is a class of techniques used when the distribution of training data differs
from that of the testing data [[16]]. In DA, the training distribution of data is the source data, while
the data it will be tested on is the target data. We are specifically evaluating unsupervised domain
adaptation [31]], which is the problem scenario where one has access to labeled source data, but target
data is unlabeled. Unsupervised DA techniques adjust training to include unlabeled target data, detect
the difference between the source and the target domain distributions, and aim to minimize it. In
astronomy, DA has been applied to multiple scenarios of classification [e.g., L1} [13} 12 4] 34]),
generative models [e.g., 24} [26], and regression in one scenario [21]].

We apply two DA techniques to strong gravitational lensing analysis in this work: adversarial training
using Domain Adversarial Neural Networks (DANNs) [20]] and a distance-based method called
Maximum Mean Discrepancy (MMD) [22]. We apply both techniques to the task of estimating the
Einstein radius (O g) of galaxy-scale gravitational lensing systems. Both source and target domain
data are simulated using deeplenstronom [25]. The source data is simulated strong lenses, with
no noise. For target data, the same strong lenses are simulated, but with emulated Dark Energy Survey
(DES)[1]] conditions. We show that both techniques improve the model performance on the target
domain, demonstrating the capacity of using DA to bridge the gap between simulated and real data.

Our manuscript is organized as follows. In Section 2] we describe the two DA methods utilized in
this work; in Section [3] we describe the data; in Section [d] we describe the neural network model; in
Section 5] we present our results; and in Section [§] we discuss our findings.

2 Methods

Both DA approaches used are unsupervised techniques: while they require labeled data from the
source domain, they leverage only unlabeled data from the target domain. This mirrors the problem
setting of training on labeled simulated data, while only having access to unlabeled real data. We
assume that the two domains have the same conditional probability distributions of a label y, given
some data x, ps(y|z) = p:(y|x), but that the marginal probability distribution of the data x within
the domains themselves is not equal: ps(x) # pi(z). This is known as a covariate shift between
domains [19]]. Under this assumption, feature-based DA techniques such as DANN and MMD aim to
close the gap by learning a transformation that maps source data into target data [19]. DANN and
MMD find this transformation by utilizing domain invariant features. In practice, a Convolutional
Neural Network (CNN) feature extractor learns to produce invariant features that are identical between
the two domains.

We use a total loss: Lrotar = Larse + ApaLpa, where L s g is the Mean Squared Error (MSE)
loss used to minimize the error on the task the model is trained to perform (estimate the Einstein
radius of a gravitational lens). Lp 4 is either the MMD loss or the DANN loss, and it minimizes the
variance of extracted features between domains. This loss is weighted by constant Ap 4.

DANN [20]] uses a two-headed network, with an adversarial approach to find invariant features. All
data is fed into a feature extractor made of convolutional layers, which is then forwarded to the two
heads, both made of linearly connected layers. The first head is the label predictor, which takes
features and makes predictions of the labels associated with them. This head is only trained with
features extracted from labeled source data and minimizes £ ;5. The second head is the domain
classifier, which takes features from both domains and makes predictions as to which domain those
features came from. We use a Negative Log-Likelihood Loss function (NLL) loss as Lp 4. With
DANN:S, the goal is to learn domain-invariant features, which will maximize £p 4 loss and confuse
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the domain classifier. To simultaneously optimize the the feature extractor to find features that will
enable classification of labeled data in the label predictor head, and confuse the domain classifier
head (rendering it unable to differentiate between the domains), a gradient reversal layer is used in
between the feature extractor and the domain classifier. This layer does not affect the data in forward
propagation, but multiplies the gradient by -1 in back propagation, flipping the gradient.

MMD [22] is a distance-based domain adaptation method that identifies invariant features by mini-
mizing the distance between the source and target domain distributions. We employ kernel methods
to calculate MMD distance, which we use as our DA loss:

Lo = =y S0 k@) = b i), 20) = b ), + b ). (0).

where k is a kernel between samples x5 from the source domain and samples x from the target
domain, and NV is the total number of samples across both domains. We follow [11}|39] and use a
combination of multiple Gaussian Radial Basis Functions (RBF) kernels.

3 Data

We use the deeplenstronomy [25] package, which is built on lenstronomy [9], to generate galaxy-
scale strong lens datasets with 40 x 40-pixel images in a source domain and in a target domain. For
the source domain, we generate images with no pixel noise. For the target domain, we add noise based
on DES|1] observing conditions, which include sky brightness and seeing, drawn from empirical
distributions of these values [2]. Both domains contain 50, 000 lenses with Einstein radius varying
from 0.5 arc seconds to 3.0 arc seconds drawn from a uniform distribution. We divide the dataset into
training, validation, and testing with a ratio of 70%:10%:20%. Figure [T| provides example lensing
systems from the source and target domain datasets.

HEEE

Figure 1: Examples of our source (top) and target (bottom) domain images. The Einstein radius
increases from left to right.

4 Neural Network Architecture

We employ a baseline CNN with three convolution layers (each layer followed by ReLu activation,
batch normalization, and max pooling) and two linear layers. Details of the CNN architecture are
in Table [2]in the appendix. MSE loss is used for the main regression task, and DA is performed
using a DANN or MMD loss. For both the DANN and MMD variations, latent space features are
gathered after the final max pooling layer. For the DANN, we use a gradient reversal layer followed
by the same two-linear layer architecture repeated for the domain classifier. A softmax activation is
applied to the domain classifier’s output and NLL is used as the domain classifier loss. We use the
Adam optimizer for both the DANN and the MMD. Optimal hyperparameters were found through
cross-validation. For all models, the batch size is fixed at 32. For training without DA we used
a learning rate of 1072, while both DANN and MMD used 6 x 10~°. For MMD, we used DA
loss weight Ap 4 = 1.4. The DA loss weight for DANN was set adaptively as proposed in [20]. It
is initiated at 0 and gradually reaches 1 over the course of training, using the weighting function
ApaA = m — 1, where p is fraction of training process completed, from O to 1. For all

models, convergence was reached after 30 epochs.



Source Domain Target Domain
NoDA 0.98 +£0.0011 0.50 +0.23
DANN 0.97 £ 0.0052 0.94 £+ 0.011
MMD 0.98 +0.013 0.95 4+ 0.018

Table 1: R? score for training without DA in the top row, with DANN in the middle row, and with
MMD in the bottom row. Each score is the mean of ten identical networks, initiated with different
random seeds and trained under the same procedure. Standard deviation is also given across these
models.

To evaluate the performance of the CNN, we use the R-squared (R?) score [37]]. It is defined as

SSRegression N _ N
R2 =1- %7 where SSRegression = Z (yz - %)2 and SSTotrLl = Z (y - yi)2~ Here’ Y
is the model’s prediction, y; is the corresponding true value, and ¥ is the mean of all true values. This
metric shows how well the model can predict a dependent variable (Einstein radius). A larger R?

indicates a better fit of the data, with a perfect fit of B> = 1.0.

5 Results

We report the R? scores in the source and target test sets in Table 1, Furthermore, in Figure [2| we
visualise predictions against actual values, as well as fractional residuals, which are calculated by
Residualfract = (O, Predicted — OF True)/ O, Predicted- The fractional residuals help visualize
how each prediction is potentially biased.

Figure [2{and the R? scores in Table|1|show that both the DANN and MMD are able to significantly
improve model performance on a more complex target domain when trained with a simpler source
domain (up to 0.45 improvement in target R? scores, making both source and target scores close to
1) . The fractional residuals in Figure 2| support these results, with both DANN and MMD attaining
target domain fractional residuals substantially smaller in magnitude than the model without DA. It
should also be noted from the residuals that both DANN and MMD struggle the most with lower
values of Einstein radius in the target domain. The model without DA and MMD similarly struggle
on the low end of Einstein radius in the source domain, while DANN alone performs similarly across
the whole source domain. With the inclusion of DA, DANN suffers a small trade-off in accuracy on
the source domain. MMD may not lose accuracy on the source data, compared to regular training
without DA, but has a higher degree of uncertainty due to its increased standard deviation.

6 Discussion

These results show that both of the tested DA-based methods have the potential to facilitate the
analysis of real survey data in the future — i.e., reducing bias when using labeled simulated data for
training and new unlabeled real data as the test set.

Currently, the existing number of real lens images are likely not enough to use as a target domain for
DANN or MMD. However, as future large-scale surveys are released, many more real lens images
will become available, with the help of automated identification using deep learning. Studies such
as [l17]], [28], and [30] have demonstrated the viability of these methods. At that point, DANN and
MMD may be used for further analysis.

It should be noted that if noise were to be the only difference between simulated and real data, it
may be viable to just simulate noise in training data. However, other domain shifts are likely to
exist between real and simulated data, which DANN and MMD would be employed to mitigate. To
this end, a further investigation into domain shifts beyond DES-survey noise emulation is needed
to ensure the gap from simulated to real data can be closed. Both DANN and MMD would likely
struggle to overcome the domain shift caused by differences in data distributions of the parameters
the network is trying to infer. For instance, if the source and target domain lenses are drawn from
different distribution of Einstein radii, the network may have difficulty estimating this parameter
correctly. This calls for investigation into other domain adaptation techniques, such as instance-based
techniques [[18}19], which will be a topic of our future investigations.
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Figure 2: Predictions against actual values of test data sampled from the source domain (left panels)
and target domain (right panels). Below each plot are the fractional residuals for visualization.
Brighter color represents a higher density of samples, found using a kernel-density estimate with
Gaussian kernels [33]. Results are given without DA (top row), with DANN (middle row), and with
MMD (bottom row).
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Appendix

Layers Properties Output Shape Parameters
input 1*40*40 (1, 40, 40) 0
Filters: 8
Convolution (2D) Kernel: 33 (8,42,42) 80
Activation: ReLu
Batch Normalization - (8,42, 42) 16
. Kernel: 2 2
MaxPooling Stride: 2 (8,21,21) 0
Filters: 16
Convolution (2D) Kernel: 33 (16, 21, 21) 1,168
Activation: ReLu
Batch Normalization - (16, 21, 21) 32
. Kernel: 2 2
MaxPooling Stride: 2 (16, 10, 10) 0
Filters: 32
Convolution (2D) Kernel: 33 (32,10, 10) 4,640
Activation: ReLu
Batch Normalization - (32, 10, 10) 64
. Kernel: 2 2
MaxPooling Stride: 2 (32,5,5) 0
Flatten - (800) -
Fully Connected Activation: ReLu  (128) 102,528
Fully Connected Activation: ReLu (1) 129

Table 2: CNN architecture
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