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Abstract

Graph convolutional neural networks (GCNs) operate by aggregating messages
over local neighborhoods given the prediction task under interest. Many GCNs
can be understood as a form of generalized diffusion of input features on the graph,
and significant work has been dedicated to improving predictive accuracy by al-
tering the ways of message passing. In this work, we propose a new convolution
kernel that effectively rewires the graph according to the occupation correlations
of the vertices by trading on the generalized diffusion paradigm for the propaga-
tion of a quantum particle over the graph. We term this new convolution kernel the
Quantum Diffusion Convolution (QDC) operator. Through these studies, as well
as experiments on a range of datasets, we observe that QDC improves predictive
performance on the widely used benchmark datasets when compared to similar
methods.

1 Introduction

Graph Convolutional networks (GCN), which extend the convolutional neural network (CNN) ar-
chitecture to the graph domain, work by using a localized filter that aggregates information from
neighboring nodes [Zhang et al., 2019]. By sharing weights across different nodes, GCNs can learn
representations that capture both the local and global structure of the graph. These models have
shown remarkable success in a variety of tasks such as node classification [Kipf and Welling, 2016,
Zhang et al., 2019], graph classification[Xie et al., 2020], community detection [Jin et al., 2019,
Wang et al., 2021], and link prediction [Chen et al., 2020, Cai et al., 2019, Zeb et al., 2022]. Early
GCN development learned these filters in the spectral domain [Bruna et al., 2013], but this requires
the decomposition of large matrices. Due to the computational expense of these decompositions,
spatial filters rose in popularity and have been the dominant paradigm. Significant effort has been
dedicated to methodological improvements that make spatial convolutions more expressive [Bodnar
et al., 2021, Bouritsas et al., 2022] and scalable [Hamilton et al., 2017, Ying et al., 2018]. Further
work has shown that it is possible to unify many of these models based on spatial convolutions as
generalized graph diffusion [Chamberlain et al., 2021a,b, Gasteiger et al., 2019], with considerable
attention being focused on improving diffusion dynamics [Elhag et al., 2022, Di Giovanni et al.,
2022]. We take a different approach and consider the question: “Can we improve graph neural net-
works by considering a different physical model?” Following in the steps of Gasteiger et al. [2019],
we construct a graph Laplacian preprocessing framework that captures the infinite-time dynamics of
quantum diffusion through a system. We call this framework QDC, and find that this framework is
very flexible and can be included into the architecture of many graph neural networks. QDC can be
equivalently understood as a method for rewiring the graph according to the likelihood a quantum
particle starting at one vertex will be observed at another. In summary, this paper’s core contribu-
tions are (1) we propose QDC, a quantum mechanically inspired diffusion kernel, a more powerful
and general method for computing sparsified non-local transition matrices, (2) we propose a novel
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multi-scale message passing paradigm that performs message passing using QDC and the origi-
nal combinatorial Laplacian in parallel. Our method can also be understood within the context of
physics inspired graph neural networks. GraphHEAT proposes performing graph convolutions using
a parameterized version of the heat kernel [Xu et al., 2020]. The Graph Neural Diffusion (GRAND)
method recasts message passing as anisotropic diffusion on a graph, and provides a framework with
which to unify many popular GNN architectures [Chamberlain et al., 2021a, Thorpe et al., 2022].
BLEND pushes this perspective further to explore diffusion in non-euclidean domains [Chamberlain
et al., 2021b]. PDE-GCN looks further and seeks to combine diffusion with the wave equation to
define new message passing frameworks [Eliasof et al., 2021]. To our knowledge, ours is the first
work that explores quantum dynamics as a message passing formalism.

2 Methodology

Given an undirected graph, G = (V, E ,X), where V is the vertex set with cardinality |V| = N , and
E is the edge set, and X ∈ RNxd denote the matrix of vertex features, where d is the dimensionality
of the feature set. E admits an adjacency matrix, A ∈ RNxN , whereAij = 1 if and only if vertices i
and j are connected. Because we have restricted ourselves to undirected graphs, Aij = Aji. While
this G could have weighted edges, we focus on the unweighted case for simplicity. It is common to
augment a graph with self loops, which is performed by Ã = I−A, to allow for message passing of
depth l to include messages from all random walks of length r ≤ l+1. We define our combinatorial
graph Laplacian as L = D− 1

2 ÃD− 1
2 , where D− 1

2 is the diagonal degree matrix of Ã. In analogy
to the rectangular domain, we can use the definition of the graph Laplacian to construct a Fourier
basis in the graph domain. In the case of an undirected graph, the Laplacian is a symmetric positive
semidefinite matrix which admits an eigensystem with orthonormal eigenvectors and real, positive,
eigenvalues. These eigenvectors form the graph Fourier basis and the eigenvectors form the squared
frequencies. We can then write the eigendecomposition as L = UTΛU , where U is the matrix of
eigenvectors and Λ is the diagonal matrix of eigenvalues.

This definition allows us to begin to define filters. The original spectral GCN paper Bruna et al.
[2013] learned filters of the form g(Θ) = diag(Θ), where diag(θ) is learned set of parameters for
each of the Fourier basis functions. This is then used for filtering as f(x) = U

[
g(Θ) ·

(
UTx

)]
.

While effective and highly flexible, this filtering technique has O(n) learnable parameters, can
be difficult to learn, and requires decomposition of L to construct eigenvectors U . It has been
previously observed power-series expansions of these filters provide a generalized diffusion ker-
nel [Gasteiger et al., 2019, Chamberlain et al., 2021a] that is a solution to the heat equation
∂f
∂t = −c△f = −cLf . As we can see from the definition of the heat kernel, it exponentially
squashes the contributions from eigenmodes with large eigenvalues, thereby providing us with a
low-pass filter. Intuitively, this should help in settings where averaging out the noise from neigh-
bors can improve performance. From a physical perspective, the heat equation is well known to drive
towards an infinitely smooth equilibrium solution; by smoothing out the initial distribution exponen-
tially quickly in acausal ways. The heat equation is also well known to exhibit thermal bottlenecks
when the heat flux and temperature gradient vectors deviate [Bornoff et al., 2011, Grossmann and
Lohse, 2000]. This physical process is analogous to the oversmoothing and oversquashing prob-
lems that have plagued graph neural networks respectively. We can observe both of these physical
processes in Figure 1, which presents a comparison of heat and quantum diffusion at four different
time steps. By t = 50, we observe that the top lobe of the barbell has completely thermalized, or
oversmoothed, and heat is slowly starting to leak into the center vertex, or oversquashed. In 200
timesteps, we observe very little in the way of heat transfer. It is clear that there is a thermal bottle
neck in our system, and this is hampering the flow of heat.

Quantum Convolution Kernels It is natural to ask if grounding our message passing in a different
physical model would yield better results. While structurally similar to the heat equation, its dynam-
ics are stable, do not lead to oversmoothing, natively capture both constructive and destructive inter-
ference, and are controllable through the engineering of potential energy surfaces [Chou et al., 2012,
Jaffé, 1987, Sakurai and Commins, 1995]. Indeed, Schrödinger’s equation and the heat equation are
related through a Wick rotation by π/2 [Popov, 2005]. Qualitatively, we observe in Figure 1 that un-
like thermal diffusion, quantum diffusion is able to quickly pass information through the bottleneck.
Later timesteps show us constructive and destructive interference that provide structure to the prop-
agations. Videos of the propagation show oscillations across the top lobe and along the vertical axis
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Figure 1: A comparison of both heat diffusion and quantum dynamics on a barbell graph. The
top row corresponds diffusion according to the heat equation, and the bottom row corresponds to
the Schrödinger equation. We simulated dynamics for 1000 unitless timesteps with the same initial
distribution for both equations. We observe the top row thermalizes within the cluster rapidly to
the same temperature but encounters a bottleneck as the two ends of the barbell thermalize. By
contrast, quantum dynamics exhibits oscillatory behavior both within the clusters as well as across
the clusters, and probability density migrates rapidly.

as a function of time. Qualitatively, these dynamics do not seem to oversmooth and are less prone to
oversquashing as a result. The dynamics of our wave function are governed by the time dependent
Schrödinger equation, which, for a free particle, is given by i∂ψ(x,t)∂t = −△ψ(x, t) = Hψ(x, t).
Where △ is the Laplace-Beltrami operator. The eigenstates of H define a complete and orthogo-
nal basis such at we can expand any state as ψ(x, t) =

∑
i cie

iEitϕi(x), where ϕi(x) is the ith
eigenvector and ci is the expansion coefficient. In our setting, we wish to compte the steady-state
distribution for traisition from site i to j under a model observation process that is frequency depen-
dent and introduces tunable parameteters into our diffusion kernel. We use a Gaussian filter defined
by P =

∑
i exp

(
−(Ei − µ)2/2σ2

)
, where µ and σ are our two tunable parameters. Assuming that

our initial quantum state was equally delocalized across all vertices, we obtain the final expression
for Q:

Q(xi, xj) =
∑
α

e−
(Eα−µ)2

2σ2 ϕ†α(xi)ϕα(xj), (1)

where Q is our Quantum Diffusion Kernel (QDC). Intuitively, we interpret Q(xi, xj) as the time
averaged probability of transition from vertex i to vertex j. Since we have assumed that the graph is
undirected and that the (i, j) matrix element is computed with a particle initially localized at i and
measured at j, the transition probabilities computed are symmetric. Analogously to GDC, we can
use Q as our transition matrix, instead of combinatorial graph Laplacian. Doing so allows us to use
QDC with any message passing neural network by simply replacing L with Q.

Multiscale GNN QDC can be used as a drop-in replacement for a transition matrix for any message
passing GNN. In section 3, we explore using QDC in place of L for both graph convolutional
networks and graph attention networks. Because QDC provides a band pass filter, unlike GDC
which provides a low-pass filter, it is interesting to explore the message passing across both L and
Q in parallel. In this setting, we pass messages in parallel using L on one side and Q on the other.
We then combined messages from each tower by either adding or concatenating them together.
Finally, we feed the resulting messages into a readout function for predictions. We term this method
MultiScaleQDC, because we are able to pass messages across multiple length scales of the graph.

3 Experiments

Because our method can be viewed as a Laplacian preprocessing technique, we use QDC in place
of the traditional Laplacian in both graph convolution networks (GCN) [Kipf and Welling, 2016,
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Table 1: Experimental results on common node classification benchmarks. Top results for each
family are highlighted in bold.

Cornell Texas Wisconsin Chameleon Squirrel Actor Cora Citeseer Pubmed
GCN 45.68 ± 7.30 63.51 ± 5.70 59.22 ± 4.28 41.16 ± 1.71 27.89 ± 1.21 29.32 ± 1.07 87.46 ± 1.11 76.61 ± 1.28 88.47 ± 0.39
GCN+GDC 47.03 ± 5.69 63.51 ± 6.07 57.25 ± 2.88 40.42 ± 2.93 27.97 ± 0.93 29.14 ± 0.91 87.63 ± 0.91 76.58 ± 1.21 88.46 ± 0.55
GCN+SDRF 45.14 ± 8.20 62.97 ± 5.55 57.84 ± 1.52 40.55 ± 1.52 28.17 ± 0.97 29.07 ± 1.03 87.44 ± 1.10 76.85 ± 1.47 88.47 ± 0.34
GCN+BPDC 60.81 ± 5.95 68.92 ± 6.54 63.73 ± 5.28 50.44 ± 1.77 40.37 ± 1.17 31.46 ± 1.04 85.86 ± 1.17 74.70 ± 1.34 84.55 ± 0.56
GCN+QDC 63.78 ± 9.68 72.70 ± 6.67 65.29 ± 6.80 53.22 ± 1.56 40.62 ± 1.94 35.08 ± 0.64 86.00 ± 1.56 75.10 ± 1.52 84.65 ± 0.44
GCN+MultiScaleQDC 66.22 ± 5.44 73.78 ± 4.53 64.71 ± 4.47 54.71 ± 2.79 42.24 ± 1.73 30.55 ± 1.45 87.85 ± 0.85 76.72 ± 1.49 88.32 ± 0.47
GAT 60.81 ± 8.40 68.11 ± 5.24 63.14 ± 7.58 44.89 ± 1.64 31.47 ± 1.44 30.48 ± 1.17 86.68 ± 1.64 75.64 ± 1.55 84.11 ± 0.70
GAT+GDC 61.89 ± 7.30 68.11 ± 5.09 63.33 ± 3.62 45.96 ± 1.94 31.66 ± 1.72 31.18 ± 0.76 86.46 ± 1.20 75.92 ± 1.10 87.53 ± 0.55
GAT+SDRF 59.19 ± 6.33 67.30 ± 4.90 63.92 ± 5.20 45.88 ± 1.93 31.76 ± 1.00 31.13 ± 0.76 85.29 ± 1.34 75.90 ± 1.27 87.47 ± 0.48
GAT+QDC 77.57 ± 3.83 87.57 ± 5.56 88.04 ± 3.33 50.90 ± 2.16 35.38 ± 1.81 35.57 ± 1.05 84.68 ± 1.54 75.21 ± 1.30 87.55 ± 0.31
GAT+MultiScaleQDC 77.03 ± 4.05 86.22 ± 5.60 88.04 ± 4.06 52.08 ± 2.60 36.90 ± 1.11 36.55 ± 1.22 87.73 ± 0.74 76.39 ± 1.32 87.59 ± 0.38

Zhang et al., 2019], graph attention networks (GAT) [Veličković et al., 2018]. QDC is similar in
structure to graph diffusion convolution (GDC) [Gasteiger et al., 2019] and SDRF [Topping et al.,
2021], so we have chosen to compare QDC to both GDC and SDRF in addition to an unprocessed
Laplacian in a GCN, a GAT, and a H2GCN. CORNELL, TEXAS, and WISCONSIN from the WebKB
dataset; CHAMELEON and SQUIRREL from the Wiki dataset; Actor from the film dataset; and cita-
tion graphs CORA, CITESEER, and PUBMED. Where applicable, we use the same data splits as Pei
et al. [2020]. We present the results from our experiments in Table 1. We observe that QDC provides
improvements in accuracy across the heterophilic datasets, but seems to provide mixed results for
Cora, Citeseer, and Pubmed. By using MultiScaleQDC, we see that multi-scale modeling appears
to provide improvements across all datasets. This validates our hypothesis that QDC can provide a
viable step forward to improving GNN performance. These results are consistent for both QDC and
MultiScaleQDC modifications to our three base models – GCN, GAT, and H2GCN.

Importance of Quantum Dynamics QDC has two components, the quantum dynamics and the
choice of filter. In the development of our method we have chosen to use a Gaussian filter be-
cause it models inhomogeneous broadening, which is a physical effect that is caused by micro-
scopic details of a system such as atomic motion. This physical model is intuitively sensible if
we imagine that our vertices are analogous to the atoms. While we can provide physical argu-
ments from analogy for this choice, citation networks are not molecular systems. This raises the
question of whether the Gaussian form of our filter is important, or whether any band-pass fil-
ter would be sufficient. To answer this question we implemented a variant of QDC given by
B(xi, xj) =

∑
α σ (Eα − µ+ γ)σ (µ+ γ − Eα)ϕ

†
α(xi)ϕα(xj),where σ(·) is the logistic sigmoid

function, µ is the center of our bandpass filter, γ is the width of our band-pass filter, and B is the
band-pass version of QDC which we term the Band Pass Diffusion Convolution(BPDC). Using this
filter, we performed experiments on a range of data sets using BPDC as our transition matrix with a
GCN and have presented those results below in Table 1. We observe that BPDC is able to provide
significant lift across the heterophilic datasets, but that lift is in general smaller than that observed
with QDC.

4 Conclusion

In this work we have introduced a quantum diffusion kernel that we have termed QDC, and a
multiscale model that we have termed MultiScaleQDC. We have motivated this convolution ker-
nel through a deep connection with quantum dynamics on graphs. In experiments we have shown
that QDC generally helps in cases of heterophilic node classification, and MultiScaleQDC seems to
improve in both homophilic and heterophilic node classifications settings when included in three dif-
ferent base GNN models – GCN, GAT, and H2GCN. While we are able to use iterative, matrix-free,
eigensolvers, our method is still more expensive than spatial convolutions. Additionally, propagat-
ing gradients through approximate eigensolvers is quite challenging, making it difficult to optimize
the parameters of the diffusion kernel during training time. Finally, because our method is spectral,
we are only able to use this method in transductive settings. We believe that quantum convolution
in the spatial domain will open up avenues to address these issues, and are excited to explore this
approach in followup work.

4



References
Hasan Metin Aktulga, Md Afibuzzaman, Samuel Williams, Aydın Buluç, Meiyue Shao, Chao Yang,
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A Appendix

A.1 Model Details

Sparsification QDC defined as Q(xi, xj) is a matrix Qi,j = Q(xi, xj), where Qi,j is the probability
of transition from vertex i to vertex j. Most graph diffusion results in a dense transition matrix,
and QDC is no different. This happens because a quantum particle starting at site i will visit all
vertices within its connected component given an infinite amount of time, yielding probabilities that
can be small but non-zero. This is a potentially major downfall of QDC when compared against
spatial methods like Graph Diffusion Convolution [Gasteiger et al., 2019]. This has the potential to
introduce O(N2) storage costs. To address this issue, we sparsify the resulting QDC matrix. We
consider two different sparsification methods: a simple threshold based approach, or an approach
that only keeps the top-k highest weighted connections. We denote the sparsified QDC kernel as
Q̃. While Q was both row and column normalized, Q̃ is not. Therefore, after sparsification we
normalize Q̃ in the usual way, defining Q̃sym = D

−1/2

Q̃
Q̃D

−1/2

Q̃
. We will drop the sym in the

following, such that all uses of Q̃ are normalized.

Efficient Diagonalization QDC is a spectral method, and depends on the eigendecomposition of
L. This is commonly viewed as too computationally demanding of a procedure because the full
eigendecomposition of a matrix requires O(N3) time, and the storage costs of the resulting dense
eigensystem are O(N2) where N is the number of vertices. While this is generally true, we rec-
ognize from the form of our kernel in equation 1, we are constructing a band pass filter and are
thus only interested in a subset of the eigensystem. As a result, we are able to use approximate
methods that are more computationally efficient. Due to the importance of eigendecomposition
to the computational sciences, this problem has received considerable attention with algorithms
such as power iteration [Mises and Pollaczek-Geiringer, 1929], divide and conquer [Cuppen, 1980],
Arnoldi iteration [Arnoldi, 1951], Lanczos iteration [Lanczos, 1950, Ojalvo and Newman, 1970],
and LOBPCG Knyazev [2001], Knyazev et al. [2007]. In this work we used LOBPCG, or Locally
Optimal Block Preconditioned Conjugate Gradient, because it is provides a straightforward method
to compute a limited number of eigenvectors and eigenvalues while only depending on the computa-
tion of matrix vector-products. LOBPCG is also known to converge linearly, be highly numerically
stable, and highly scalable – scaling to an N of more than 144 million [Aktulga et al., 2016] – mak-
ing it suitable for a variety of different applications. In our applications, we use the folded spectrum
method [MacDonald, 1934] along with LOBPCG to compute eigenvalues centered around µ. If the
solver is unable to converge, we retry with µ′ = µ + ϵλ, where ϵλ = 1e − 6. In our settings, we
compute min(512, N) eigenvalue, eigenvector pairs. In Table 2, we present average runtimes for
training and testing for all GCN based methods. While we observe a significant increase in runtime,
we attribute the majority of that cost to the preprocessing of the Laplacian, which requires both an
eigendecomposition and sparse matrix multiply. In applied settings, it may be possible to cache the
Laplacian which would allow the amortizaiton of his cost. These techniques do not change the fact
that diagonalization, even with matrix free methods, is expensive.

A.2 Spectral Dependence of Homophily

It has previously been observed that the performance of Graph Convolution models correlates with
the homophily of the graph, which motivates us to ask whether homophily is spectrally dependent.
To answer this question, we constructed adjacency matricies from subsets of the eigenvectors that
corresponded to each unique eigenvalue. In the case where the eigenvalues were degenerate, we
computed the mean homophily. We then sparsified the resulting adjacency matrix by removing all
entries smaller than 1e − 7, and plotted the results in Figure 2. We observe that the homophily
is highly spectrally dependent. Actor appears to be an outlier in this regard, with the optimal µ
near 1 and the homophilic peaks existing in the range [−1, 0.5]. We attribute this to the generally
poor performance on the Actor dataset, with a wide but flat performance envelope. In the case of
the Cornell dataset, we observe that the dataset is generally quite heterophilic but becomes more
homophilic in higher portions of the spectrum; and observe that the µ cluster for GCN+QDC in
Figure 4 corresponds to this highly homophilic region. Similar trends are found for both Texas and
Wisconsin. We observe spectral variations of homophily for Chameleon and Cora as well; and
note the same agreement between the optimal µ and this observed spectral peaks in the homophily
curves.
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Figure 2: Plots of the homophily as a function of the eigenvalues. We observe that homophily has a
strong spectral dependence, and that the mid-band peaks in homophily agree with recovered optimal
µs.

Figure 3: Violin plots of our experiments GCN+MultiScaleQDC (green), GCN (yellow), and
GCN+QDC (blue), where these plots are generated by aggregating over all experiments associ-
ated with each model. We observe that both GCN+QDC and GCN+MultiScaleQDC generally have
a high density of near-optimal configurations.

A.3 Experimental Details

In an effort to ensure a fair comparison, we optimized the hyper-parameters of all models on all
data sets. We performed 250 steps of hyper-parameter optimization for each method, and the hyper-
parameter search was performed using OPTUNA, a popular hyper-parameter optimization frame-
work. All tuning was performed on the validation set, and we report the test-results associated with
the hyper-parameter settings that maximize the validation accuracy. The parameters, and the distri-
butions from which they were drawn, are reported in Appendix A.8. All experiments were run using
PYTORCH GEOMETRIC 2.3.1 and PYTORCH 1.13, and all computations were run on an Nvidia
DGX A100 machine with 128 AMD Rome 7742 cores and 8 Nvidia A100 GPUs.

A.4 GCN Hyperparameter plots

Analysis of Hyper-parameters In addition to the hyperparameters associated with the underly-
ing model (e.g. number of layers or number of hidden units), QDC has multiple hyperparameters,
which are unique to the rewiring process that we tuned as part of our experiments. These hyperpa-
rameters correspond to µ, the mean of the gaussian, σ, the standard deviation of the gaussian; and
k, our cutoff parameter. This is not dissimilar from methods like GDC or SDRF. GDC includes
hyperparameter for α and k which correspond to the diffusion strength and the cutoff parameter,
respectively. SDRF has hyperparameters that correspond to the maximum number of iterations; the
temperature, τ ; and Ricci-curvature upper-bound, C+. QDC only introduces one additional hyper-
parameter when compared with GDC, and has the same number of hyperparameters as SDRF. To
understand the sensitivity of our method to these hyperparameters, we first present a violin plot in
Figure 3, which plots a kernel density estimate of the model performances from the experiments
on a GCN, GCN+QDC, and MultiScaleQDC. In the case of the Cornell dataset, we clearly observe
that MultiScaleQDC has two humps, which correspond to the GCN and QDC distributions. We see
similar patterns in the Texas, Wisconsin, Squirrel, and Actor datasets as well. This robust behaviour
also holds for GAT based models, as can be seen from Figures 5. Furthermore, we clearly see that
there are many experimental settings that out-perform the baseline model.
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Figure 4: Scatter plots of mean test accuracy plotted against hyperparameters µ and ln(σ) in the
first and second rows respectively for GCN+QDC (blue) and GCN+MultiScaleQDC (green). We
observe that each of QDC and MultiScaleQDC are robust with respect to deviations in each of the
hyperparameters.

We next turn our attention to the sensitivity of our model to µ and σ for both QDC and MultiScale-
QDC models by plotting mean test accuracy against µ and σ in the first and second rows of Figure 4
respectively. We have plotted both GCN+QDC (blue) and our MultiScaleQDC (green) on the same
plot. We observe that in general, there are many settings of µ and σ that provide near equivalent
performance which indicates that our method is robust to potentially suboptimal choice of hyperpa-
rameters. Interestingly, we find that the optimal µs for GCN+QDC and our MultiScaleQDC model
are quite different. This is because in the MultiScaleQDC case, we are looking for eigenvectors
that correct for any deficiencies in the original combinatorial Laplacian. In Figure 7 we present a
3D triangulated surface generated from the same data used to generate the scatter plots in Figure 4,
so that we could better understand the correlations between both sets of hyperparameters. In this
figure we find relatively wide plateaus of high performance that are consistent with the findings in
Figure 4, although these surface plots are somewhat difficult to interpret without the aid of the 2d
projections presented in Figure 4. We observe similar robust behaviour for GAT-based models as
well, as can be seen from Figures 5, Figure 6, and Figure 8.

A.5 GAT Hyperparameter plots

Figure 5: Violin plots of our experiments GAT+MultiScaleQDC (green), GAT (yellow), and
GAT+QDC (blue), where these plots are generated by aggregating over all experiments associated
with each model. We observe that both GAT+QDC and GAT+MultiScaleQDC generally have a high
density of near-optimal configurations.

A.6 Runtime Costs

A.7 Hyperparameter 3d Plots

A.8 Model Details

We performed 250 steps of hyper-parameter optimization for each of the models presented in Ta-
ble 1. All training runs were run with a maximum of 1000 steps for each split, with early stopping
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Figure 6: Scatter plots of mean test accuracy plotted against hyperparameters µ and ln(σ) in the
first and second rows respectively for GAT+QDC (blue) and GAT+MultiScaleQDC (green). We
observe that each of QDC and MultiScaleQDC are robust with respect to deviations in each of the
hyperparameters.

Table 2: Runtime costs for the QDC and MultiScaleQDC compared to a variety of baselines. We
find that QDC requires a nontrivial increase in compute costs, but that this expense often carries
with it a significant accuracy gain.

GCN GCN+GDC GCN+SDRF GCN + QDC GCN + MultiScaleQDC
Cornell 5.25 5.28 5.18 19.41 40.87
Texas 5.41 5.27 6.55 8.46 4.52
Wisconsin 8.47 8.98 12.02 31.88 22.56
Chameleon 7.42 39.45 52.92 20.22 257.33
Squirrel 36.65 32.42 160.73 77.12 115.47
Actor 12.98 10.80 332.40 309.55 299.91
Cora 20.08 83.71 42.13 79.52 166.70
Citeseer 36.90 59.25 51.02 59.25 130.39
Pubmed 81.92 84.62 4230.08 2366.10 2377.68

turned on after 50 steps. In the interest of reproducibility, we outline the parameters and ranges that
we’re optimized for each model below.

Table 3: Hyper-parameter ranges that we optimized over for our GCN.

Parameters Distribution Values
Number of Layers Categorical [1, 2]
Hidden Dim Size Categorical [2, 4, 8, 16, 32, 64, 128]
Dropout percentage Uniform [0, 0.99]
Learning Rate Loguniform [1e-4, 1e-1]
Weight Decay uniform [0.0, 0.9]
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Figure 7: Triangulation surface plots of mean test accuracy plotted against hyperparameters µ and
ln(σ) for GCN+QDC (orange) and GCN+MultiScaleQDC (blue). We observe that each of QDC
and MultiScaleQDC are robust with respect to deviations in each of the hyperparameters because
the high performance regions tend to be quite large.

Table 4: Hyper-parameter ranges that we optimized over for our GCN+GDC.

Parameters Distribution Values
Number of Layers Categorical [1, 2]
Hidden Dim Size Categorical [2, 4, 8, 16, 32, 64, 128]
Dropout percentage Uniform [0, 0.99]
GDC-α uniform [0.001, 0.5]
GDC-ϵ uniform [1e-7, 1e-1]
Learning Rate Loguniform [1e-4, 1e-1]
Weight Decay uniform [0.0, 0.9]
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Figure 8: Triangulation surface plots of mean test accuracy plotted against hyperparameters µ and
ln(σ) for GAT+QDC (orange) and GAT+MultiScaleQDC (blue). We observe that each of QDC and
MultiScaleQDC are robust with respect to deviations in each of the hyperparameters because the
high performance regions tend to be quite large.

Table 5: Hyper-parameter ranges that we optimized over for our GCN+QDC.

Parameters Distribution Values
Number of Layers Categorical [1, 2]
Hidden Dim Size Categorical [2, 4, 8, 16, 32, 64, 128]
Dropout percentage Uniform [0, 0.99]
QDC-µ uniform [-1, 1]
QDC-σ uniform [0.1, 1.0]
QDC-ϵ loguniform [1e-7, 1e-1]
Learning Rate Loguniform [1e-4, 1e-1]
Weight Decay uniform [0.0, 0.9]
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Table 6: Hyper-parameter ranges that we optimized over for our MultiScaleQDC.

Parameters Distribution Values
GCN Number of Layers Categorical [1, 2]
GCN Hidden Dim Size Categorical [2, 4, 8, 16, 32, 64, 128]
GCN Dropout percentage Uniform [0, 0.99]
QDC Number of Layers Categorical [1, 2]
QDC Hidden Dim Size Categorical [2, 4, 8, 16, 32, 64, 128]
QDC Dropout percentage Uniform [0, 0.99]
QDC-µ Uniform [-1, 1]
QDC-σ Uniform [0.1, 1.0]
QDC-ϵ loguniform [1e-7, 1e-1]
Combinator Categorical [ concat, add]
Learning Rate Loguniform [1e-4, 1e-1]
Weight Decay Uniform [0.0, 0.9]

Table 7: Hyper-parameter ranges that we optimized over for our GAT.

Parameters Distribution Values
Number of Layers Categorical [1, 2]
Hidden Dim Size Categorical [2, 4, 8, 16, 32, 64, 128]
Number of Heads Categorical [1, 2, 3, 4, 5]
Dropout percentage Uniform [0, 0.99]
Learning Rate Loguniform [1e-4, 1e-1]
Weight Decay Uniform [0.0, 0.9]

Table 8: Hyper-parameter ranges that we optimized over for our GAT+GDC.

Parameters Distribution Values
Number of Layers Categorical [1, 2]
Hidden Dim Size Categorical [2, 4, 8, 16, 32, 64, 128]
Number of Heads Categorical [1, 2, 3, 4, 5]
Dropout percentage Uniform [0, 0.99]
GDC-α Uniform [0.001, 0.5]
GDC-ϵ Uniform [1e-7, 1e-1]
Learning Rate Loguniform [1e-4, 1e-1]
Weight Decay Uniform [0.0, 0.9]

Table 9: Hyper-parameter ranges that we optimized over for our GAT+QDC.

Parameters Distribution Values
Number of Layers Categorical [1, 2]
Hidden Dim Size Categorical [2, 4, 8, 16, 32, 64, 128]
Number of Heads Categorical [1, 2, 3, 4, 5]
Dropout percentage Uniform [0, 0.99]
QDC-µ Uniform [-1, 1]
QDC-σ Uniform [0.1, 1.0]
QDC-ϵ loguniform [1e-7, 1e-1]
Learning Rate Loguniform [1e-4, 1e-1]
Weight Decay Uniform [0.0, 0.9]

14



Table 10: Hyper-parameter ranges that we optimized over for our Multiscale GAT+QDC.

Parameters Distribution Values
GAT Number of Layers Categorical [1, 2]
GAT Hidden Dim Size Categorical [2, 4, 8, 16, 32, 64, 128]
GAT Number of Heads Categorical [1, 2, 3, 4, 5]
GAT Dropout percentage Uniform [0, 0.99]
QDC Number of Layers Categorical [1, 2]
QDC Hidden Dim Size Categorical [2, 4, 8, 16, 32, 64, 128]
QDC Number of Heads Categorical [1, 2, 3, 4, 5]
QDC Dropout percentage Uniform [0, 0.99]
QDC-µ Uniform [-1, 1]
QDC-σ Uniform [0.1, 1.0]
QDC-ϵ loguniform [1e-7, 1e-1]
Combinator Categorical [ concat, add]
Learning Rate Loguniform [1e-4, 1e-1]
Weight Decay Uniform [0.0, 0.9]
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