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Abstract

Model-agnostic anomaly detection is one of the promising approaches in the search
for new beyond the standard model physics. In this paper, we present Set-VAE, a
particle-based variational autoencoder (VAE) anomaly detection algorithm. We
demonstrate a 2x signal efficiency gain compared with traditional subjettiness-
based jet selection. Furthermore, with an eye to the future deployment to trigger
systems, we propose the CLIP-VAE, which reduces the inference-time cost of
anomaly detection by using the KL-divergence loss as the anomaly score, resulting
in a 2x acceleration in latency and reducing the caching requirement.

1 Introduction

At the Large Hadron Collider (LHC), proton beams collide with each other at a frequency of 40MHz.
The tremendous amount of data produced cannot be stored directly due to the limited capacity of
downstream processing and storage systems. Therefore, an online processing system progressively
reduces input data rates of three orders of magnitude [1, 2]. The first stage of this system consists of
field-programmable gate arrays (FPGAs) where filters are executed with sub-microsecond latencies
to retain the event data only if a specific set of criteria has been reached [3]. While this approach is
very effective in discovering a new particle [4], it may be suboptimal when searching for new physics
beyond the standard model that lacks a strong theoretical prior. Therefore, a model-agnostic approach
to trigger in the detectors is of high interest to the high-energy physics community, and deep learning
methods are among the most promising approaches [5].

Essentially, our goal is to find the out-of-distribution (OOD) events given the background distribution
that is well-understood. This particular problem falls into the realm of anomaly detection (AD). One
of the well-known architectures for anomaly detection is the autoencoder (AE) [6–8]. However, there
exist a few challenges that we must tackle before deploying an autoencoder-based algorithm to the
trigger in particle detectors. Firstly, we must develop a framework that can encode and decode a
point cloud in an efficient way since a collision event is essentially a collection of particles [9, 10].
Secondly, we must control the number of operations and make the algorithm more parallelizable for
future deployment to FPGAs [8, 11].

In this work, we propose an anomaly detection framework based on conditional variational autoen-
coders and Chamfer loss to address the first issue and propose a novel architecture called CLIP-VAE
that is tailored to future deployment to online data processing systems. We present an evaluation of
this framework on jet-level anomaly detection, and we envision that by demonstrating its capability on
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jet-level particle-based anomaly detection, Set-VAE can be scaled to serve as an event-level anomaly
detection algorithm at the CMS phase-2 level-1 trigger system. The code of this work is published in
this Github repository.

2 Related Work

2.1 Anomaly Detection in High Energy Physics

Recently, anomaly detection has been widely studied in the high energy physics (HEP) community
[5, 7, 8, 12, 13]. In particular, for jet-level anomaly detection, there are many works based on
autoencoders [7, 9, 10, 13–15]. Traditionally, image-based autoencoders have been used for jet
anomaly detection [7, 13, 15]. Recently, particle-based anomaly detection has gained more interest
since it can exploit the sparse nature of jet data and gives better performance. Some of the examples
include graph neural networks [10, 14] and deep sets [9]. However, the lack of a scalable decoding
framework for particle-based autoencoders makes these algorithms infeasible for more realistic
real-time trigger applications.

2.2 Permutation Invariant and Equivariant Models

As the input to the trigger is a set of particles with no particular ordering, it is important to guarantee
that our model is permutation invariant or equivariant [16, 17]. To build a permutation invariant
model, the common choices include a deep set [16] and a sequence of cross-attention layers with a
destination length of one (the “class attention layer”) [18]. As for permutation equivariant models,
the self-attention block [19] and the deep set equivariant model [16, 17] can be used. However,
attention-based algorithms are computationally intensive and thus infeasible for trigger applications.

3 Model Design

3.1 Set-VAE

Designing an autoencoder for point clouds poses a significant challenge, particularly in the decod-
ing phase since generating a variable-size set from a fixed-dimensional latent space is non-trivial.
Therefore, inspired by the neural translation model [20], we propose the Set-VAE to efficiently
encode and decode a set. Given a set of pairs of continuous inputs (e.g. momentum, energy, etc.)
and discrete labels (e.g. particle type) {(xi, ci)}, the encoder outputs a sample from the latent
distribution z ∼ qϕ(z|{(xi, ci)}) for the whole set by using a permutation invariant model and the
reparametrization trick [21]. To decode from a set-level embedding z to elements, we broadcast z
to the same number of elements as the input. However, as the decoder is permutation equivariant,
the output set will have identical elements. To break the degeneracy, we embed the particle type as
well as an identification number (i.e. e−1 , e−2 , µ+

1 , etc.) and feed them to the decoder. This is done by
using a superposition of categorical embeddings (particle type) and sinusoidal positional encoding
(identification number). Finally, the reconstruction loss is defined as the Chamfer loss with the extra
care that only elements with the same discrete label can be matched:

L({(xi, ci)}, {(x′
j , c

′
j)}) =

1

2

∑
i

min
j:ci=c′j

∥xi − x′
j∥2 +

∑
j

min
i:ci=c′j

∥xi − x′
j∥2
 (1)

3.2 CLIP-VAE

Ref. [8, 9] used the KL-divergence loss of VAE as an anomaly score for OOD sample detection.
However, in the Set-VAE paradigm, this approach proves ineffective due to the inconsistency between
Chamfer loss and the assumptions used when deriving VAEs. In VAEs, to compute the evidence lower
bound (ELBO), the log-likelihood is replaced with mean-squared error (MSE) loss by parametrizing
pθ(x|z) as a Gaussian distribution [21, 22]. However, in Set-VAE, due to the permutation invariance
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Figure 1: A sketch of the Set-VAE framework. The input to the encoder includes both kinematics
and particle identification information, whereas the decoder receives particle identification and latent
representation reconstructs kinematics.

of the set, the likelihood should be aggregated for all possible matches between the inputs and outputs.

log pθ({xi}|z) ∝ log

 ∑
σ∈P (N)

exp

(
−

N∑
i

∥xi − µσ(i)∥2
)+ C (2)

where the µi is the mean specified by the decoder (or the “reconstructed” sample) and C is the
normalization constant. However, this expression is intractable and we approximate it with a
lower bound which is the Chamfer loss. To ensure the Chamfer loss is a good approximation,
two conditions must be met: (1) agreement with the leading term (Earth Mover’s Distance) [23]
and (2) exponential suppression of other terms. This holds true only when reconstructed particles
closely match input particles. For poorly reconstructed samples, the reconstruction loss will be
underestimated. Consequently, as the regularization of the reconstruction task becomes looser
(underestimated), the KL-divergence reduces for these samples as it is a regularization. To address
this issue, we propose the CLIP-VAE. In CLIP-VAE, to avoid over-regularization for the poorly
reconstructed samples, we do not back-propagate the KL-divergence term for a fraction of the samples
that have higher reconstruction loss. Our hypothesis is illustrated in Fig.2 and validated in Fig. 3.

Figure 2: For well-reconstructed samples, the Chamfer loss agrees with the leading term in (2)
and the contribution from all other matchings is exponentially suppressed. For poorly reconstructed

samples, the Chamfer loss fails to produce a valid matching and underestimates the loss.

4 Experiments

4.1 Anomaly Detection with the JetClass Dataset

A jet is a collimated shower of particles that result from the decay and hadronization of quarks q
and gluons g. The JetClass dataset is a large-scale jet dataset first introduced in Ref. [24]. The
dataset contains 125M jets from ten different types of particles ranging from light quarks, gluons,
various decay modes of top quarks (t) and Higgs bosons (H), and W and Z bosons decay to quarks
(W/Z). We use it to train an anomaly detection model solely on q/g (QCD) jets and evaluate the
anomaly detection performance on the other processes. Refer to [24] for additional information of
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(a) Set-VAE
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(b) CLIP-VAE

Figure 3: The joint distribution of reconstruction loss and KL divergence loss. We can see that in the
Set-VAE case, the highest reconstruction loss does not correspond to the highest KL-divergence loss,
while in the CLIP-VAE case, a stronger correlation is observed.

the dataset. We train and evaluate our framework on two different architectures, the Deep Set and the
Transformer. Each of the models takes as input the jet constituents’ momenta and energies relative to
the jet axis in cylindrical coordinate (Erel, pT,rel,∆η,∆ϕ) as continuous variables with appropriate
shifting and scaling to ensure the magnitudes are comparable. As for discrete variables, we use the
particle type information (PID). Here we consider eight types of particles: charged/neutral hadron
(x3), photon, electron (x2), and muon (x2). As for the baseline, we train a logistic regression model
with the n-subjettiness [25] (τ ) observables to emulate a standard supervised search. The logistic
regression is trained to optimize the nine types of signal simultaneously with an equal representation.
The score is given by s = σ(9.9 − 7.2τ21 − 3.3τ32 − 3.4τ42). To make a fair comparison, since
τ variables have no access to PID information, we train the transformer and deep set without PID
information as an ablation study. All the numbers reported are averaged over five distinct runs. More
details about the training procedure and model architecture can be found in the Github repository.

4.2 Results

Set-VAE: Firstly, we train models with the Set-VAE paradigm and compare their performance. Since
we focus on trigger applications, we report the signal efficiency TPR/(TPR + FNR) of each type
of jet at a background rejection (TNR + FPR)/FPR of 100. As reported in Table. 1, the models

Table 1: Evaluation of models trained with Set-VAE paradigm.
Model Profile Signal efficiency (%) at Rej = 100

#params FLOPs H → 4q H → bb̄ H → cc̄ H → gg H → qql W → qq Z → qq t → bl t → bqq

DeepSet w/ PID 205K 13.8M 5.9± 0.3 7.1± 0.8 6.4± 0.3 0.6± 0.1 57± 6 6.7± 0.3 5.7± 0.2 77± 9 18.1± 0.9
DeepSet w/o PID 4.2± 0.2 1.1± 0.1 2.6± 0.2 0.4± 0.2 28± 3 4.8± 0.6 3.4± 0.4 35± 7 9.1± 3.4
Transformer w/ PID 1.81M 171M 6.3± 0.7 6.1± 0.4 5.6± 0.4 0.6± 0.1 42± 3 5.2± 0.8 4.5± 0.5 54± 3 13.5± 0.7
Transformer w/o PID 3.0± 1.1 0.8± 0.3 1.9± 0.4 0.2± 0.1 15± 2 3.4± 0.3 2.4± 0.3 20± 8 4.4± 0.1

N-subjettiness N/A N/A 0.6 1.9 5.0 0.2 19 4.1 3.5 31 8.8

trained with the Set-VAE paradigm outperform the baseline of n-subjettiness logistic regression.
Interestingly, we see no advantage in using transformers over deep sets. This can be explained by the
fact that in an anomaly detection setting, we are not looking for a cumbersome model; instead, we
want the model to be just enough expressive to encode the majority of training samples but not the
OODs. More importantly, in terms of the number of operations (FLOPs), the deep set model is about
thirteen times more efficient than the transformer.

CLIP-VAE Results: To illustrate the effectiveness of the approach, we first compare two models,
one trained with Set-VAE and another trained with CLIP-VAE. We can see a significant difference in
performance from Figure. 4 : We can see that with the KL-divergence clipping, it is possible to detect
anomalies with the KL-divergence loss. Similarly, we train deep set and transformer CLIP-VAE
with and without PID information. The performance is reported in Table. 2. Firstly, by comparing
the number of operations to the ones reported in Table. 1, we can see that the CLIP-VAE paradigm
can reduce the computational complexity by half. Furthermore, by comparing the signal efficiencies
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(b) CLIP-VAE

Figure 4: A comparison between the receiver operating curve of deep set models trained with Set-VAE
and CLIP-VAE when using KL-divergence as anomaly scores. The same behavior is observed for the
transformer architecture.

Table 2: Evaluation of models trained with CLIP-VAE paradigm.
Model Profile Signal efficiency (%) at Rej = 100

#params FLOPs H → 4q H → bb̄ H → cc̄ H → gg H → qql W → qq Z → qq t → bl t → bqq

DeepSet w/ PID 103K 6.95M 5.8± 2.1 5.1± 1.2 5.2± 1.1 0.4± 0.1 35± 3 3.5± 0.6 3.3± 0.6 53± 8 22± 5
DeepSet w/o PID 1.0± 0.2 2.2± 0.2 6.3± 0.5 0.2± 0.1 19± 1 6.0± 0.6 5.2± 0.5 49± 2 4± 1
Transformer w/ PID 952K 78.9M 6.5± 0.8 4.0± 0.9 4.9± 0.7 0.5± 0.1 43± 4 3.8± 0.3 3.3± 0.3 58± 5 19± 1
Transformer w/o PID 3.1± 0.8 2.2± 0.3 5.7± 0.6 0.3± 0.1 23± 3 5.6± 0.9 5.0± 0.6 41± 3 11± 1

N-subjettiness N/A N/A 0.6 1.9 5.0 0.2 19 4.1 3.5 31 8.8

reported, we are able to conclude that CLIP-VAE has a similar anomaly detection performance. This
makes CLIP-VAE very advantageous over other methods when it comes to FPGA deployment since
CLIP-VAE does not require caching the inputs which can be very expensive on FPGAs.

5 Conclusion

In this paper, we present two novel architectures for jet-level anomaly detection. Firstly, the Set-VAE
paradigm provides a general method to train an autoencoder for sets. We proposed a novel decoding
framework for sets that can naturally produce a set of objects from a single latent representation.
Furthermore, we utilize the idea of conditional autoencoder to incorporate PID information into
our autoencoders. With this framework, we realized a significant improvement in terms of signal
efficiency compared with the n-subjettiness methods. Secondly, we proposed the CLIP-VAE paradigm
to resolve the problem that KL-divergence is not a good anomaly detector. By clipping some of the
KL divergence, we are able to make the KL-divergence score a good indicator of anomalies and
reduce the computational complexity by half while still retaining the high signal efficiencies seen
in the Set-VAE case. We envision that the CLIP-VAE can be a very promising paradigm for deep
learning algorithms for LHC triggers.

6 Broader Impact Statement

We expect that this work will stimulate further research and discussions in deep learning for anomaly
detection. In particular, the Set-VAE paradigm provides a basic scalable framework for implementing
particle-based autoencoders, which can serve as a basis for experimenting with different architectures.
Furthermore, the CLIP-VAE paradigm enables fast anomaly detection without running the decoder,
which can be very useful for anomaly detection at triggers.
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