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Abstract

Fast thermal simulation for System on Chip (SoC) plays a crucial role in integrated
circuit (IC) design industry, particularly as power density escalates with increasing
computational requirements. It is imperative to assess thermal performance compre-
hensively during the design phase, utilizing a rapid and precise thermal simulator
to expedite design iterations. In this paper, we introduce a fast, physics-aware
thermal simulator that draws inspiration from Fourier’s law and the Fourier-Biot
equation, which correspond to the first and second derivatives of the temperature
map. Consequently, the learning objective evolves from merely translating images
to approximating natural phenomena such as the thermal gradient and thermal
laplacian. By replacing the image-based loss with thermal-aware loss, the proposed
model achieves lower prediction error, higher data efficiency, and more physically
accurate behavior. The present model demonstrates a significant improvement,
achieving a 34% reduction in Maximum Temperature Error (MTE), showcasing
the potential for integrating physics-aware learning into SoC thermal design.

1 Introduction

The growing demand for high performance in mobile, 5G and AI computing applications is increasing
the criticality and challenge of thermal management design. Among these, SoC thermal design stands
as the most critical factor [4, 9].

High temperatures can lead to CPU throttling or overheating, which in turn results in decreased
device performance and poor user experiences; this issue becomes even more critical with the advent
of 3D stacked chiplets [6]. Furthermore, the complexities of SoC Interlecture Property (IP) placement
design, which involves various target IPs and multiple physical constraints such as thermal, IR
and timing, lead to an extensive design of experiments (DOE). Additionally, the IC industry faces
significant time constraints, and conventional thermal simulation methods using Computational Fluid
Dynamics (CFD) tools are highly time-consuming. Typically, it takes dozens of minutes to a few
hours to perform steady state thermal simulation with CFD tools. In response to these challenges,
there is an urgent need for a method that is able to provide immediate feedback from power input to
temperature output. Accelerating the simulation process allows for the assessment of a wide variety
of floorplan candidates, thereby fostering innovative, thermally-aware floorplan design explorations.
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Figure 1: The proposed physics-aware model adopts thermal gradient and thermal laplacian, the key
concepts in the heat conduction equation, to achieve the simulation with higher fidelity.

Thermal analysis, in general, can be executed either through empirical experimentation or computa-
tional simulations. Within the realm of mobile SoC design, simulations are predominantly employed
to attain a more optimized thermal design. Nonetheless, for the exploration of thermally critical
floorplan placement designs, examining each individual floorplan scenario and its corresponding
power setting often necessitates considerable computational time. Recently, Deep Neural Networks
(DNNs) have been used to accelerate CFD tools. The associated research works can be broadly
divided into two primary categories: generic-physics models and task-specific ones. Generic-physics
models, including neural ODEs [2] and FNO [5], leverage a universal framework underpinned by
DNNs to address differential equations. However, these generic models require meticulous provision
of domain-specific assumptions by the user, such as boundary conditions, prior to the initiation of
the training process. In stark contrast, task-specific models only require paired input and output
data for certain application scenario, and the corresponding model can be trained. The work in
[7] proposes a thermal solver that handles constant and distributed heat transfer coefficients. The
EDGe [3] interprets full-chip thermal simulation as image translation, thereby converting the power
map into the temperature map with the U-Net [8] architecture. However, task-specific models may
inadvertently overlook the inherent physical nature of a certain task. For example, the EDGe model
is trained with the image-based MSE loss only, a fitting loss that does not take into account the
continuous relations between two adjacent pixels (cf. Figure 1(b)). As a result, the enhancement of
their performance is largely dependent on the availability of extensive training data.

In summary, generic-physics models are dedicatedly crafted by experts, whereas task-specific models
usually leverage less domain knowledge and require more training data. In this paper, we integrate
physical constraints into task-specific models, resulting in a model that is both accurate and data-
efficient. We introduce a novel steady-state thermal simulator for immediate power-to-temperature
mapping, offering a speedup of over 100 times compared to the CFD commercial tool.2 This speedup
allows exploration towards optimal floorplan placement. The accuracy of the proposed model is
amplified by employing the domain-specific loss design combined with U-Net modification. As a
result, the proposed model can achieve lower loss, higher data efficiency, and more realistic physical
behavior.

2 Methods

We review the image-based loss LMSE used in EDGe, derive the physics-aware U-Net3 from
the thermal governing equations, and then illustrate the overall learning objective Lenergy. In
conventional image-to-image translation, the de facto loss function is the mean-squared error in
pixel space Ω (1). The following loss terms implicitly assume and thus omit the summation over a
batch of samples for simplicity, where T̂ is the predicted temperature map and T is the ground truth
temperature map.

LMSE = Σe∈Ω(T̂e − Te)
2 (1)

As shown in Figure 1(b), the temperature contour generated by the U-Net with image-based loss is not
as smooth as the one from the benchmark CFD tool (Figure 1(a)), with some contour discontinuities
observed. In physics, the temperature relationship between adjacent grids can be described by

2The table of speed comparison is on the appendix section.
3We use the EDGe, which is based on U-Net, as the backbone of the proposed model. (github link).
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Figure 2: The proposed model decodes thermal gradient and thermal laplacian map, and apply
physics-aware loss besides the objective for image translation.

Fourier’s law (2), which states that the rate of heat transfer is proportional to the negative temperature
gradient.

qv = −k∇T (2)
where qv is the energy generation rate per unit volume; k is the thermal conductivity of the material;
∇T is the temperature gradient. In three dimensions, the equation becomes (3), where ρ and c are
the density and specific heat of the material, respectively; q is the power source.
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The Fourier-Biot equation (3) is a general heat conduction equation that describes the energy
conservation property in rectangular coordinates. For the proposed method, which targets at steady
state conditions, ∂T/∂t is zero. The governing equations inspire a physics-aware network architecture
(Figure 2) that emulates the properties of the heat conduction equation. The proposed model encodes
the power map P with the encoder Epwr, and predicts the temperature and derivative infomation with
two decoders. The temperature decoder Dtemp predicts the temperature map T̂ , and the Sobel and
Laplacian operators, Gxy and L2

xy, are convolved with T̂ to get the thermal gradient map T̂ ∗Gxy

and the thermal laplacian map T̂ ∗ L2
xy. The thermal gradient decoder Dgrad outputs the first and

second derivatives of the temperature map, MTG and MTL. To learn the derivatives in the governing
equation, novel loss terms LTG and LTL are added. The thermal gradient and thermal laplacian loss
terms are given by (4) and (5), where kernel operations by Gxy give N -channel tensors that represent
gradient maps in N directions; ∗ is the convolution operator; γ1 and γ2 are hyperparameters.

LTG = Σe∈ΩΣ
N
n=1{[(T̂ ∗Gxy)e,n − (T ∗Gxy)e,n]

2 + γ1 × [MTG,e,n − (T ∗Gxy)e,n]
2} (4)

LTL = Σe∈Ω{[(T̂ ∗ L2
xy)e − (T ∗ L2

xy)e]
2 + γ2 × [MTL,e − (T ∗ L2

xy)e]
2} (5)

In combination, the final loss function is defined in (6), where α, β are hyperparameters.

Lenergy = LMSE + αLTG + βLTL (6)

3 Experiments

The dataset consists of 1950 paired images of power maps and temperature maps. We split the training
set of size 1500 and the testing set of size 450. For the experiments of data efficiency (Figure 3),
subsets are sampled from the training set for training. All the models shown in the ablation study
(Table 1) are trained with a subset of 1000 samples. Following the setting in EDGe, each pixel in
the image represents an area of size 0.25mm× 0.25mm, and the size of each image is 60 pixels ×
60 pixels. Each power map contains randomly spawned rectilinear shapes that are filled with power
values sampled from a uniform distribution, and the ground truth temperature maps are parsed from
the simulation results of Ansys-Icepak [1]; to prevent overfitting, data augmentations such as random
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Table 1: Ablation study of the physics-aware loss. Evaluation of prediction performance using
MSE and MTE, with MSETG and MSETL indicating physics fidelity.

Error \Model Image-based Physics-aware

Metrics Definition LMSE LMSE + LTG LMSE + LTG + LTL

MSE (T̂ − T )2 0.82 0.72 (-12%) 0.58 (-29%)
MTE max(|T̂ − T |) 2.24 1.87 (-16%) 1.48 (-34%)

MSETG [(T̂ − T ) ∗Gxy]
2 0.15 0.09 (-40%) 0.06 (-60%)

MSETL [(T̂ − T ) ∗ L2
xy]

2 0.32 0.17 (-47%) 0.08 (-75%)

rotation and random flip are applied during training. The image-based baseline model applies the
U-Net and loss of EDGe, and the physics-aware model refers to the modified U-Net trained with
Lenergy, batch size of 64, and 720 epochs at a learning rate of 0.002 with the Adam optimizer. We
investigate the effectiveness of the proposed method, the data efficiency, and the learned physical
phenomona. The initial two rows in Table 1 demonstrate the superior performance of the proposed
physics-aware U-Net over the image-based baseline, as evidenced by an approximate 30% reduction
in loss. The MSE (Mean Squared Error) is used to measure the quality of the generated image.
The MTE (Maximum Temperature Error) is employed to identify the most significant pixel error in
a temperature prediction. Metrics in Table 1 are pixel-averaged per prediction, with mean values
reported over the testing set. We scrutinize the data efficiency of the proposed model by reducing the
training set size. Given the lengthy data collection process with CFD tools, a model with equivalent
error rates using less data is preferred. Comparing testing errors of models trained with 250 and 500
samples, as depicted in Figure 3, it can be concluded that the proposed model achieves similar error
rates with half the amount of the data, demonstrating its high data efficiency, further emphasizing the
benefits of embedding physical insights into model training, especially when there is a paucity of
data. In Figure 4, We visualize the thermal gradient map to assess if the proposed model has learned
realistic physical phenomena. The thermal gradient contour of the physics-aware model exhibits
smoother characteristics when contrasted with the image-based model. The MSETG, and MSETL

in Table 1 represent the MSE of the predicted thermal gradient and thermal laplacian maps. The
smaller errors of the proposed models suggest more realistic simulations than the image-based model.

Figure 3: Averaged testing errors for models trained with varying sizes of training sets.

Figure 4: Visualization of the learned thermal gradient maps. The T̂img and T̂phy represent the
temperature predictions made by the image-based model and the physics-aware model, respectively.
The symbol G signifies the Sobel kernel, with the subscript denoting the dimensionality.
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4 Conclusions

This paper introduces a physics-aware thermal simulator for SoC design, which attains enhanced
prediction accuracy, data efficiency, and fidelity to physical behavior. The proposed model, based
on the U-Net architecture and inspired by Fourier’s law and the Fourier-Biot equation, achieves a
34% reduction in MTE, underscoring the potential of integrating physics-aware learning into thermal
simulation. Furthermore, the SoC thermal simulator can achieve a runtime reduction of approximately
100 times compared to the conventional CFD tool. The results open up new avenues for research
directions and have far-reaching implications for the semiconductor industry, particularly in the
context of increasing computational demands and power density. Future research will expand this
model to other simulations and optimize its performance, paving the way for advanced physics-aware
machine learning models for thermal simulation and beyond.
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Appendix

Table 2: Comparative analysis of the CFD Tool and the proposed model

Model Node/Pixel Runtime/case Speedup CPU cores GPU

CFD tool (Ansys-Icepak) 1.3M nodes ≈ 30 mins 1x 4 None

The proposed model 3600 pixels ≈ 3 ms > 100x 4 RTX 2080 Ti x 1

6


	Introduction
	Methods
	Experiments
	Conclusions

