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Abstract

Modeling detailed chemical kinetics stands as a primary challenge in combustion
simulations. Recent machine learning (ML) approaches aim to accelerate chemical
kinetics integration, though their application is often limited to simpler reaction
mechanisms. This study presents a novel framework to enforce physical constraints,
specifically total mass and elemental conservation, into the training of ML models
for reduced-space chemical kinetics of large and complex reaction mechanisms.
Given the strong correlation between full and reduced solution vectors, our method
utilizes a small neural network to establish an accurate and physically consistent
mapping. By leveraging this mapping, we enforce physical constraints in the
training process of the ML model for reduced space chemical kinetics. The
framework is demonstrated here with the chemical kinetics of CH4 oxidation.
The resulting solution vectors from our Deep Operator Networks-based approach
are not only accurate but also align more consistently with physical laws.

1 Introduction

The detailed modeling of chemical kinetics is the principal bottleneck in the combustion simulations.
Recently, several efforts have been made to learn the chemical kinetics and accelerate its integration in
a simulation using Machine Learning (ML) tools (1; 2; 3; 4; 5). However, due to the rapid increase in
the dimensionality of the governing ODE system as the chemical reaction mechanisms become more
complex, the machine learning models have predominantly been restricted to simpler mechanisms.
For larger and more complex reaction mechanisms that have a high-dimensional solution vector of
thermochemical scalars, chemical kinetics is learned in the reduced space (6; 7; 8), either through
dimensionality reduction techniques (9; 10) or by selecting a set of representative species (5; 11).
While ML models have demonstrated significant potential in capturing chemical kinetics in the
reduced space, the temporal evolution of the reduced solution vector may not conform to certain
physical constraints, like total mass and elemental conservation. These physical constraints are
typically essential for a CFD solver, potentially hindering the integration of the machine learning
model with such a solver. Recent efforts have explored incorporating domain-specific physical
principles or laws into neural network training by adjusting the loss function (12), allowing the
models to not only rely on data but also on established physical knowledge. An obvious step of
incorporating the physical constraint of total mass and elemental conservation in the training process
of the machine learning model for reduced space chemical kinetics is hindered by the unavailability
of the full solution vector. Enforcing these physical constraints in the training process often requires
access to the full solution vector. In this paper, we introduce a framework that enables the integration
of physical constraints into the training process of machine learning models on reduced-space
chemical kinetics. This framework is readily adaptable to any machine learning model aiming to
capture kinetics or dynamics in a reduced space. The framework relies on the strong correlation
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between full and reduced solution vectors, establishing a high-fidelity and physically consistent
mapping from the reduced set to the full set using a small neural network. Leveraging this high-
fidelity and physically consistent mapping, the primary training process for identifying chemical
kinetics in reduced space can enforce physical constrain with an apparent access to the full solution.
The framework is demonstrated on the chemical kinetics of CH4 oxidation. To capture the chemical
kinetics, we adopt the framework of Kumar and Echekki (8), based on Deep Operator Networks
(DeepONets) (13), which accurately learns the chemical kinetics operator in the reduced space
of representative thermochemical scalars. We first establish an accurate and physically consistent
mapping from the reduced set to the full solution vector. Subsequently, we successfully incorporate
the physical constraints of total mass and elemental conservation into the training of DeepONet,
which learns chemical kinetics in a reduced space. As a result, the solution vector produced by
DeepONet achieves greater physical consistency retaining its predictive accuracy.

2 Methodology

2.1 Chemical-Kinetics identification through a Deep Operator Network

For a 0D, homogeneous and constant-pressure reactor, temperature and species are evolved based on
a system of ODEs, which are solved as an initial value problem taking the form:

dϕi

dt
= f(ϕ, p0), i = 1, 2, 3, . . . , n and ϕ(0) = ϕ0 (1)

where ϕ is the thermochemical composition vector, which includes species mass fractions and
temperature. The term, f(ϕ, p0) is a function of thermochemical scalars, ϕ, and represents the
chemical reaction source terms based on the law of mass action. Chemical kinetics presented by
the above system of stiff ODEs is learnt through a DeepONet framework of Kumar and Echekki
(8), where a set of representative species, as a reduced set ∈ Rm, is considered instead of a full
thermochemical solution vector ∈ Rn. The dimensionality of reduced space (Rm) is far smaller than
the dimensionality of the original solution vector (Rn). In order to train the DeepONet, as shown
in Figure -1a, a reduced solution set at any instant in time (ϕ(t)) inputs to the Branch Net and the
time-step (δt ∈ (0,∆t)) by which the solution needs to be advanced inputs to the Trunk Net and the
output of the DeepONet is minimized against the corresponding advanced solution vector (ϕ(t+ δt))
such that loss is given by:

LDATA =
1

m

m∑
i=1

(ϕi(t+ δt)− ϕ∗
i (t+ δt))

2 (2)

where δt varies from 0 to a large fixed time-step (∆t) and ϕ∗
i (t+δt) is the corresponding ground-truth

value.

2.2 Mapping left-out scalars from reduced set: Correlation Net

Although the dimensionality of full solution vector is very large, it lives on a low dimensional
manifold since most of the scalars are highly correlated (14; 15). The reduced set (ϕi, i = 1, 2, . . .m),
identified based on principal component analysis of reaction rate data as mentioned in Alqahtani and
Echekki (16), is representative of the thermochemical manifold and it is highly correlated to the left
out scalars (ϕi, i = m + 1,m + 2, . . . n). Leveraging the high correlation, left-out scalars can be
mapped from the reduced set through an ANN denoted as Correlation Net as shown in Figure-1b.
Inputs and outputs to the Correlation Net are reduced set and left-out scalars respectively as shown in
Figure-1b and the corresponding loss is:

LC-DATA =
1

(m− n)

n∑
i=m+1

(ϕi − ϕ∗
i )

2 (3)

Since the full thermochemical space obeys certain physical laws, such as the sum of species mass-
fractions is one and elements remain conserved during the reaction as the solution vector evolves,
Correlation Net can be trained with additional losses corresponding to these physical constraints.
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LC-SUM-MF =

∣∣∣∣∣
n∑

i=1

ϕi − 1.0

∣∣∣∣∣ and LC-ELEM =

NElement∑
K=1

∣∣∣∣∣
n∑

i=1

N i
KWK

Wi
(ϕi − ϕ∗

i )

∣∣∣∣∣ (4)

where N i
K is the Kth element contribution in ith species and WK is the atomic weight of Kth

element and Wi is the molecular weight of the ith species. It should be noted that these two losses
not just include Correlation Net output but also its input. The total loss function for Correlation Net
takes this form:

LC = W1LC-DATA +W2LC-SUM-MF +W3LC-ELEM (5)

Where W1, W2 and W3 are the weights for each loss term.

(a) DeepONet for chemical
kinetics identification in re-
duced space

(b) Mapping of left-out
scalars from reduced Set

(c) Full solution sector from reduced
space chemical kinetics

Figure 1: Framework of physics - informed machine learning in the reduced space chemical kinetics

2.3 Physics-constrained chemical kinetics identification

As mentioned, the chemical kinetics for any reaction system is identified through a DeepONet in
the reduced space. For any reduced solution vector, the left-out solution vector can be reconstructed
through the pre-trained Correlation Net. Apparently, the mapping from Correlation Net extends the
reduced set to the full solution vector as shown in Figure-1c. Utilizing the mapping provided by
pre-trained Correlation Net, the training process of DeepONet, as mentioned in Section-2.1, can now
be enriched with the physical constraints of species and elemental mass conservation, as formulated
in Section-1b, with the corresponding losses defined here:

LSUM-MF =

∣∣∣∣∣
n∑

i=1

ϕi(t+ δt)− 1.0

∣∣∣∣∣ (6)

LELEM =

NElement∑
K=1

∣∣∣∣∣
n∑

i=1

N i
KWK

Wi
(ϕi(t+ δt)− ϕ∗

i (t+ δt))

∣∣∣∣∣ (7)

in addition to the data loss that is defined as:

LDATA =
1

m

m∑
i=1

(ϕi(t+ δt)− ϕ∗
i (t+ δt))

2 (8)

The total loss becomes:

L = W1LDATA +W2LSUM-MF +W3LELEM (9)

Where W1, W2 and W3 are the weights for each loss term.
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3 Results

The framework of training DeepONet with physical constraints in reduced space is demonstrated on
0D CH4 oxidation. The solution profiles for training purposes are generated from Cantera (17) with
GRI-MECH 3.0 (18) having 53 species and 325 reactions. The solution vector consisting of species
mass fractions and temperature is evolved in time for initial temperatures of Ti = 1100, 1110, 1120,
1130, 1140 and 1150 K and equivalence ratios of Φ = 0.8, 0.9, 1.0, 1.1 and 1.2. Instead of the full
thermochemical vector (54 scalars), the reduced set of 8 representative species (H2, H2O, CH4, CO2,
CH3OH, O2, CO, NO) and Temperature are considered for the chemical kinetics learning through the
DeepONet model. First, the Correlation Net is trained with the physical constraints on the full dataset
where the reduced set and left-out scalars (reduced set removed from full solution vector) are input
and output to the model respectively. Then, utilizing the mapping from the pre-trained Correlation
Net, the DeepONet model is trained with the physical constraints for chemical kinetics identification.
Both, Correlation Net and DeepONet, are modeled and trained with the JAX framework (19) on an
NVIDIA A100 GPU with the Adamax optimizer (20). The size of trainable parameters of Correlation
Net is 1100 and for DeepONet it is 55,000. Correlation Net and DeepONet are trained for 300,000
and 80,000 iterations taking around 3.3 minutes and 10.5 minutes, respectively, of GPU time. Weights
for individual losses in the total loss formulation, W1, W2 and W3 are 0.6, 0.2 and 0.2, respectively,
for training of both Correlation Net and DeepONet.

(a) (b) (c)

Figure 2: a) Correlation Net training loss decay with physical constraints of species and elemental
mass conservation. b) DeepONet training loss decay without physical constraint. c) DeepONet
training loss decay with physical constraint

Losses with and without physical constraints are shown in Figure-2. Physical constraints in the
training process of Correlation Net and DeepONet further decrease the losses corresponding to the
physical conservations. Prediction results from Correlation Net for a single time-series dataset are
shown in Figure-3. It can be observed that, by imposing physical constraints in the model training,
errors are reduced by an order of magnitude for total mass and elemental conservation keeping
predictions accurate (MAE of around 7×10−5).

(a) Precise mapping of left-out scalars (b) Sum of mass-fraction error (c) ’C’ element conservation error

(d) ’H’ element conservation error (e) ’O’ element conservation error (f) ’N’ element conservation error

Figure 3: Accurate and physically consistent mapping through Correlation Net. a) Accurate recon-
struction of left-out scalars. b) The sum of mass-fraction error is lower with physical constraint. c-f)
With physical constraints, lower elemental conservation error for ‘C’, ‘H’, ‘O’, and ‘N’ respectively.
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Predictions evolved from DeepONet for a particular initial condition (Ti=1150K, Φ = 1.1) are shown
in Figure-4. It can be observed that, by imposing physical constraints in the model training, errors
are reduced by an order of magnitude for total mass and elemental conservation keeping accurate
predictions of chemical kinetics (MAE of around 5×10−3.)

(a) Accurate evolution of solutions (b) Sum of mass-fraction error (c) ’C’ element conservation error

(d) ’H’ element conservation error (e) ’O’ element conservation error (f) ’N’ element conservation error

Figure 4: Accurate and physically consistent predictions from DeepONet for chemical kinetics. a)
Accurate predictions of the solution vector. b) The sum of mass-fraction error is lower with physical
constraint. c-f) With physical constraints, lower elemental conservation error for ‘C’, ‘H’, ‘O’, and
‘N’ respectively.

4 Conclusion and Future Works

The proposed framework facilitates the enforcement of physical constraints in the training process
of an ML model for reduced space chemical kinetics of large and complex reaction mechanisms.
Utilizing this, the evolved solution vector corresponding to CH4 oxidation, based on DeepONets,
aligns more consistently with physical laws maintaining the prediction accuracy. In the future, the
approach will be extended to even larger and more complex reaction mechanisms. Additionally, the
loss associated with the governing stiff ODE will also be integrated into the ML training process.
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