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Abstract

Chaotic systems such as the gravitational N-body problem are ubiquitous in as-
tronomy. Machine learning (ML) is increasingly deployed to predict the evolution
of such systems, e.g. with the goal of speeding up simulations. Strategies such
as active Learning (AL) are a natural choice to optimize ML training. Here we
showcase an AL failure when predicting the stability of the Sitnikov three-body
problem, the simplest case of N-body problem displaying chaotic behavior. We
link this failure to the fractal nature of our classification problem’s decision bound-
ary. This is a potential pitfall in optimizing large sets of N-body simulations via
AL in the context of star cluster physics, galactic dynamics, or cosmology.

1 Introduction

The gravitational N-body problem lies at the core of computational astronomy. Since the work of
Laplace and Lagrange in the 18th century, the stability of the Solar system has been a prominent
issue, spurring research to this day. More recently, the gravitational N-body problem is being solved
numerically to model systems ranging from icy fragments within the rings of Saturn [1]] up to the
cosmological scale [2]. Astronomers increasingly apply ML to predict properties of gravitational
N-body and related systems, including their dynamical evolution in the chaotic regime [3} 4} 5} 16l (7,
8.9, 10} [11} 12} [13]].
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Predicting the evolution of a chaotic system presents challenges due to sensitive dependence on
initial conditions [see e.g. 14], to the point that chaotic benchmarks were proposed for evaluating
data-driven forecasting models [[15]. Determining the limits of applicability of ML to these systems
is thus crucial for astronomy. Here we focus on a narrower question: are techniques such a AL
always helpful in training ML models on the gravitational N-body problem in the chaotic regime?

In AL, a model queries the data it deems most informative from an unlabeled pool, selectively
requesting labeling with the goal of using fewer labeled samples. This is beneficial when labeled data
is costly, e.g. when labelling requires running expensive simulations. AL is becoming increasingly
more popular in astronomy, with an early focus on observational surveys [16]. We thus set out
to test AL in the simplest N-body setting, a restricted version of the three-body problem known a
the Sitnikov problem. This is arguably the simplest case of N-body problem capable of displaying
chaotic behavior. The space of its initial conditions is two-dimensional, allowing easy visualization
on the plane, and the boundary between stable and unstable systems is indeed fractal.

We train different deep learning models with the goal of predicting the stability of Sitnikov’s prob-
lem from its initial conditions, with and without AL. We find that our model’s performance is not
improved, all else equal, by AL. We attribute this to the fact that the decision boundary of our prob-
lem is fractal, which results in our AL strategy wasting queries to probe it, resulting in a suboptimal
sampling of feature space.

2 The Sitnikov problem

The Sitnikov three-body problem is a special case of the three-body problem wherein two masses
orbit around their common barycenter while a third mass undergoes oscillations along the z axis.
For eccentricities of the orbit of the first and the second body greater than 0, it exhibits chaotic
behaviour, while the case with e = 0 is integrable [1°7, 18 [19].

We studied the e = 0.5 case and we selected 4 and mq such that G(my + mo) = 1 and my = mo.
The motion of the third body in the Sitnikov problem is then governed by the following differential
equations:
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Here, z and v, are the position and velocity of the third body on the z-axis, while m; is the mass of
the i body. r(t) represents the distance between either the first or the second body and their center
of mass. The oscillations are independent of the mass of the oscillating body, which is considered
massless [[19].

This problem involves only two parameters: the initial position of the oscillating body, denoted as
20, and its initial velocity along the z-axis, denoted as v,,. Changing the initial position of the two
orbiting masses is equivalent to altering these two parameters. Consequently, all our simulations
commence with the two massive bodies positioned at their respective apocenters.

We implemented our own Runge-Kutta-Felhberg solver of order 7(8) (RK7(8)) to minimize the
numerical error of our simulations [20]. We employed a variable time step to ensure that the error
remained below O(10712) as it was demonstrated to preserve the analytical solution [21].

A grid of values was computed with 500 values of v, for each of the 200 z¢ samples, resulting in a
total of 100 000 simulations:

20 € [*1, 1}
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The simulations were conducted for 100 orbits of the massive bodies after which they were consid-
ered stable. If the oscillations of the massless particle were found to be unstable based on straight-
forward criteria, the simulation was halted, and the initial conditions were classified as unstable. We
define instability as an orbit in which the massless body does not pass through the center of mass
again. The criteria used to ascertain instability are as follows: z > 10 ; v, > 0.5 and a, > —0.01.



Essentially, if the body is significantly distant from the center of mass and its acceleration is insuffi-
cient to complete another oscillation, it is classified as unstable. A similar criterion applies in cases
where z < —10. These values were selected empirically and validated on a smaller subset of data
to confirm their accuracy.

3 AL strategy

We began by implementing the classification uncertainty as the AL strategy function. Since the
classifier predicts 1 if the simulation is stable or 0 if the simulation breaks up before the end of the
simulated time, the maximum uncertainty for classification is 0.5. The classification uncertainty is
defined as follows:

U(z) =2[0.5 — P(2l|z)| 3)

where x represents the simulation under study, and 2 is the classifier’s prediction [22]]. This for-
mulation assigns an uncertainty value close to O for the most uncertain simulations and 1 for the
most certain ones. While this strategy is straightforward and relatively computationally efficient - as
all samples need to be passed through the network - it solely considers the current training model.
Consequently, this method does not take into account the intrinsic data characteristics and largely
overlooks the data space. Unfortunately, this approach of uncertainty sampling can potentially lead
to overfitting when utilizing simulation data, which was observed in this work [23].

Subsequently, another strategy was implemented: the ranked batch-mode sampling, where space ex-
ploration is prioritized, and uncertainty sampling is applied subsequently [24]]. The scoring function
is defined as:

score(z) = a(l — S(z,Y)) + (1 — a)U(x) 4)

Nx

= max (NY T Nx c, 1) 5
Here, Y represents the pool of labeled data or the labeled dataset, X is the set of unlabeled data,
and NN, denotes the number of samples in a dataset. The parameter « acts as a weighted control
that decides whether the sampling process emphasizes space exploration or relies on uncertainty
sampling. Initially, « is set to a higher value, but as more data is labeled using the AL strategy,
the unlabeled dataset decreases in size, causing « to decrease. When « approaches 1, the strategy
prioritizes unexplored regions of the space for selecting new samples, while « close to 0 signifies
reliance on model uncertainty. The scalar parameter c is accessible to the user and determines the
rate at which the transition between the two strategies occurs, making it a new hyper-parameter. The
similarity function S(x, Y") measures the similarity between x - the sample under study - and y - the
labeled dataset. The value returned by S(x,Y") should fall between 0 and 1, with 1 indicating that
the sample z lies in a completely unexplored portion of the space, and 0 denoting that it coincides
with another sample. For instance, cosine similarity can be employed as a suitable choice [24].
The sample with the minimum score is then selected for labeling, added to the labeled dataset, and
removed from the unlabeled dataset. This process is repeated for the required number of queries.

4 Results

The neural network employed is a straightforward fully-connected network comprising seven layers.
We conducted tests with this model on all our simulations to confirm its capability to effectively learn
the spatial information [see figure [Tl. The neural network generated a single output value: 1 if it
predicted that the initial conditions would lead to a stable system or 0 if not. Since most of the
data could be easily classified as stable or unstable, the dataset was pruned to eliminate these trivial
cases. Out of the original 100 000 simulations, only 46 502 fell within the selected criteria. For AL,
400 000 potential initial conditions were generated from a uniform distribution and selected using
the same criteria as for the dataset. The remaining 278 980 initial conditions were designated for AL
sampling. When AL was not employed, the same number of simulations as would be seen in total
by the AL strategy were selected from the dataset.

We utilized a learning rate of 0.001 and set c to 0.5, to facilitate exploration of the parameter space,
with a primary focus on modeling uncertainty. We examined a range of values for ¢ from 0 to
1, determining that ¢ = 0.5 yielded the most favorable results. All models underwent a training
process that spanned 400 epochs, utilizing a NVIDIA A100. In the context of our AL approach,
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Figure 1: Top row: Ground truth and a model trained on all the data, achieving an accuracy of
92.596%. The ground truth is limited by the number of simulations performed. Bottom row: A
model trained without AL, which achieved an accuracy of 89.410%, and a model trained with AL,
with an accuracy of 85.974%. The blue and red points respectively represent unstable and stable
simulations used during training.

the neural network began with an initial dataset of 500 simulations. As the training progressed, we
incrementally added 10 additional simulations from the initial condition dataset during each epoch,
specifically from epochs 50 to 200, accumulating a total of 1500 new simulations.

Incorporating AL significantly reduces the number of simulations sampled in the trivial cases, as
expected. It places a focus on boundary cases where predicting the stability of a simulation is
more challenging. However, a drawback arises due to the fractal-shaped boundaries in the Sitnikov
problem, as documented in prior research [25,26]. The model never truly converges to a satisfactory
result because in the chaotic regime arbitrarily small perturbations in initial conditions can lead to
different outcomes.

Increasing ¢ pushes the model to explore the space more extensively. However, this exploration
eventually essentially resembles random sampling. As the model begins to prioritize uncertainty
sampling, it zooms in on these intricate and ill-defined boundaries. This excessive focus on narrow
boundary regions results in the neglect of other parts of the space, leading to poor generalization.
This behavior is depicted in Figure [2| which illustrates the impact of different values of ¢ on the
model’s ability to generalize and its performance.

We also investigated the model’s performance when trained on the complete dataset gathered via the
AL process, as opposed to employing random sampling. This approach was intended to ascertain if
the simulations selected through AL were inherently the source of the poor performance. The out-
comes revealed that the model trained on the AL-derived dataset demonstrated performance closely
aligned with that of the model trained using AL itself [see figure[3]].

5 Conclusions

We used the Sitnikov restricted three-body problem to compare the performance achieved by a neural
network trained to predict stability using an AL approach versus random sampling. We found that



=0, accuracy =0.85977

c=0.1, accuracy =0.86191

Prediction

c=0.5, accuracy =0.86704 c=1, accuracy =0.85797

Prediction

-100 -075 -050 -0.25 000 025
z

. Stable
. Unstable

Figure 2: Models trained using the same parameters as previously stated, but with different values
for ¢ ranging from 0 to 1. The model achieving the best accuracy is the one trained with ¢ = 0.5.
The blue and red points respectively represent unstable and stable simulations used during training.
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Figure 3: Comparison of model accuracies trained with AL and without AL, against the number
of generated samples per epoch. The 'No Active Learning with AL Dataset’ curve represents a
model trained on a dataset selected through AL but without the AL strategy during training. The
accuracy values represent averages over multiple training runs with different random seeds to ensure
reliability of the performance measure.

AL does not result in improved performance. We attribute this failure to the fractal nature of the
decision boundary for our problem. Real life applications of AL to optimize sets of gravitational N-
body simulations are likely to face the same issue. Our results are therefore valuable as a cautionary
tale for astronomers planning such an undertaking.
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6 Appendix

Algorithm 1 Score pseudo code

function SCORE(z, Y, ¢, u) > z is the total data set, Y is the labeled or training data set, w is the
uncertainty

Ten(z)+Hen(v) * ¢
termy < ax* (1 — S(z,Y))
termg + (1 — ) xu
return termq + terms
end function

Algorithm 2 Uncertainty pseudo code

function U(x) > See Algorithm [3|for usage
subdiv < 64 > Same as batch size
res < [] > Will contain the uncertainties

for i from 0 to (len(z)//subdiv + 1) do
end < min (len(x), (i + 1) * subdiv)
predictions <— model (z[i * subdiv : end])
predictions «— 2 x abs (0.5 — predictions)
res < Concatenate (res, predictions)

end for

return res

end function

Algorithm 3 AL query pseudo code

function QUERY(n, x, Y, ¢) b n is the amount of samples to query, z is the total data set, Y is
the labeled or training data set
toLabel < []
u < u(z)
for ¢ from O to n do
scores < SCORE(z, Y, ¢, u)
idx < argmin(scores)
toLabel < Concatenate (toLabel, x[idx])
Y < Concatenate (Y, x[idx])
x + Concatenate (x[:idx], x[idx+1:])
u < Concatenate (u[:idx], u[idx+1:])
end for
return toLabel
end function

After[3] the new samples need to be labeled using an oracle. In our case, we run the simulations to
see if they are stable or not.



A neural network’s capability to effectively classify three-body problems using time series data was
demonstrated in [12]]. Building on this, we employed a simple neural network to the initial conditions
of a generalized three-body simulation to predict stability, utilizing the same active learning scheme.
Our investigation focused on a scenario where a star orbits a binary system. The simulations were
carried out within the TSUNAMI framework [27, 28], exploring a wide range of initial conditions
given in Table[T] For simplicity, all masses were assumed to be equal.

Category Parameter Symbol  Value
Semimajor axis ay 1

Eccentricity el Ulo,1]

Binary Argument of periapsis w1 Ul—m, 7]
Longitude of the ascending node 92 UJ0, 2]

Inclination i1 U|0, ]

Semimajor axis asg Ulo, 3]

Orbiting star Eccentricity €2 Ulo,1]
Argument of periapsis w2 Ul—m, 7]

Table 1: Orbital elements sampled for the generalized three-body simulations. Ula, b] denotes a
uniform distribution between the limits a and b.

The distribution of the second semimajor axis, as, was chosen to balance the number of stable and
unstable simulations. Orbital elements were sampled using the Latin hypercube sampling method,
initially between 0 and 1, then scaled to the appropriate values. The inclination of the orbiting star
and its longitude of the ascending node were set to 0, as they merely result in a rotation of the plane
in which the simulation is conducted, providing no additional information. The true anomaly of both
the binary and the orbiting star was initialized at 0.

Systems were simulated for a duration expressed in units of the binary’s first complete orbit time

divided by 2, denoted as P;.
a3 1
P, = 1 =4/ 6
! G(m1 + mz) 2m1G ( )

Simulations were retained only if the system remained intact for at least 500;. They were then
continued until 10,000P; or a breakup occurred. Breakup was detected if the ratio of the two
semimajor axes deviated from the initial conditions by more than 15%, a criterion also utilized
in other classification tasks [29]. Orbital elements were recorded every 7 P; for the first 500,
provided no breakup occurred before this threshold. Simulations were deemed unstable if e; or ey
fell outside the inclusive range of 0 to 1 exclusive.

A dataset comprising 48, 262 stable and 44, 533 unstable simulations was assembled to perform
the active learning task. Unlike in the Sitnikov problem, applying the previously described AL
scheme to this dataset did not exhibit the same drawbacks. We hypothesize that this difference
arises from the smaller fractal and chaotic regions within the space of the generalized three-body
problem. Consequently, the AL scheme is less likely to become ensnared in these complex areas.
Additionally, the exploratory component of our AL strategy should aid in avoiding getting trapped
in such smaller challenging regions, thereby not perturbing the overall effectiveness of the learning
process.
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Figure 4: Comparison of model accuracies using Active Learning (AL) and without AL against the
number of samples generated per epoch in the generalized three-body problem. The 'No Active
Learning with AL Dataset’ curve shows the accuracy of a model trained on an AL-selected dataset
but without implementing AL during training. Accuracy values are averaged over multiple runs with
varied random seeds to guarantee performance measure reliability.
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