
Machine learning-based compression of quantum
many body physics: PCA and autoencoder

representation of the vertex function

Jiawei Zang
Columbia University

jz3122@columbia.edu

Matija Medvidović
Flatiron Institute, Columbia University
matija.medvidovic@columbia.edu

Dominik Kiese
Flatiron Institute

Domenico Di Sante
University of Bologna

Anirvan M. Sengupta
Flatiron Institute, Rutgers University

Andrew J. Millis
Flatiron Institute, Columbia University

Abstract

The vertex function, a continuous function of three momenta describing particle-
particle scattering that is typically obtained by sophisticated calculations, plays
a central role in the Feynman diagram approach to quantum many-body physics.
Here, we use Principal Component Analysis (PCA) and a deep convolutional
autoencoder to derive compact, low-dimensional representations of the vertex func-
tions derived using the functional renormalization group for the two dimensional
Hubbard model, a paradigmatic theoretical model of interacting electrons on a
lattice. Both methodologies successfully reduced the dimensionality to a mere few
dimensions while preserving accuracy. PCA demonstrated superior performance
in dimensionality reduction compared to the autoencoder. The results suggest
the presence of a fundamental underlying structure in the vertex function and
suggest paths to dramatically reducing the computational complexity of quantum
many-body calculations.

1 Introduction

Quantum many-body science (understanding the behavior of large systems of many interacting
particles) is one of the computational grand challenge problems of the present day. It is naturally
formulated in terms of a state in a Hilbert space of dimension that grows exponentially with the
number of particles to be described, and quantum entanglement and the fermion sign problem mean
that the space cannot be explored via standard Monte Carlo methods. It is believed that a complete
solution cannot be obtained in polynomial time, so approximation and compression methods are
essential [1].

One important approach to the problem is via Feynman diagrams, in essence combinations of
correlation functions of operators (often with a physically intuitive meaning) acting on states in
the Hilbert space. The study of Feynman diagrams has a rich history stretching back about three
quarters of a century and a crucial role is played by the vertex function, a function of three momenta
conventionally written Γ(k1, k2, k3) describing the scattering of two particles in initial momentum
states k1, k2 into two particles in other momentum states k3 and k4 = k1 + k2 − k3. Knowledge

Machine Learning and the Physical Sciences Workshop, NeurIPS 2023.

of the vertex function enables insights into the physics, including whether the system is magnetic,
superconducting or not ordered and what are the responses to externally applied fields [1–4].

However the vertex function is difficult to compute in general and, although not exponentially large,
has a complicated structure that is not well understood. In this paper we address the question: is
there a concise representation of this intricate vertex function? We use PCA and deep convolutional
autoencoder methods [5] to compress a large dataset of vertex functions, finding that extreme
compression is possible without sacrificing accuracy and that PCA methods are markedly superior
to autoencoder methods. We introduce metrics for determining the lossiness of the compression
and show that the compressed representation leads to interesting physical insight. Our findings
forge a path towards refining the computation, storage and use of vertex functions, offering potential
advantages in computational efficiency and memory optimization.

2 Physics model

We choose the two dimensional square lattice Hubbard model, a paradigmatic model of interacting
electrons on a lattice, as an ideal test bed for our methodology. The model may be written in standard
second quantized notation using a mixed momentum (k) and lattice site (i) representation as

H =
∑
ks

ξkc
†
kscks + µ

∑
i,s

ni,s + U
∑
i

ni,↑ni,↓ (1)

Here c†ks creates an electron in a state of momentum k and spin s; the function ξk = −2t(coskx +
cosky)− 4t′coskxcosky describes how electrons move on the lattice (t and t′ are respectively the
quantum mechanical amplitudes for electrons to move from a site to its first or second neighbor),
nis = c†iscis gives the number of electrons on site i, µ is the chemical potential that controls the
electron density, and U > 0 is a repulsive interaction that correlates electron motion by disfavoring
configurations with two electrons on a site. As t′/t and µ are varied at fixed U/t (for definiteness
we focus here on U = 3t) the model is tuned between a non ordered “fermi liquid’ (FL) regime and
antiferromagnetic (AFM), superconducting (SC), and ferromagnetic (FM) ordered states [6].

We obtain vertex functions for the model using the functional renormalization group (fRG) method
[7, 8], which has been found to be a valuable computational tool for studying the properties of low
dimensional interacting Fermi systems. At the core of the fRG method is a detailed set of coupled
nonlinear differential flow equations whose solution determines the vertex functions of the system. If
the momentum space in d-dimensions is discretized into Nd

k tiles, the vertex function is specified by
N3d

k complex numbers determined by the solution of N3d
k coupled equations. These equations are

derived by taking derivatives based on an energy scale, represented by Λ. Details about the generation
of the input data are shown in the supplemental material.

The fRG procedure produced vertex functions characterized by a notably high dimensionality of 5763.
To enable a comparison between PCA and the autoencoder without excessive computational costs, we
down-sampled the vertex to reduce the dimension to a more manageable 1443. Once the comparison
was complete, the superior model was then applied to compress the original, full-dimension vertex.

We executed PCA using the randomized SVD solver. This linear method identifies the principal
components, or axes, that maximize variance, thereby transforming the original data onto a new coor-
dinate system. The significance of each coordinate is ranked by the explained variance. Conversely,
the autoencoder is a non-linear method designed to learn efficient data encoding. It compresses the
data into a low-dimensional latent space by applying a flexible parametrized transformation (the
encoder). A second model (the decoder) is trained to reconstruct the original dataset as accurately as
possible. We used five-layer convolutional neural-networks (CNN, [9]) architecture for both compo-
nents with layer norms and GeLU activations [10]. In addition to transposed convolutions, we use
non-parametric upsampling layers after each layer. Each autoencoder was trained with approximately
4 GPU-hours on a single Nvidia A100 card with a single mean-squared-error cost function.

3 Compression loss: Comparison between PCA and the autoencoder

To assess the quality of the compression we use two error metrics: the direct (pointwise) reconstruction
error of the vertex, represented as ||Γ̂−Γ||2

||Γ||2 and the error in the leading eigenvalue [11], a physical

2

quantity computed from the vertex function that characterizes the tendency towards different forms of
order. We took a random 80/20 train/test split of input data generated with t′ ranging from 0 to 0.5t

Figure 1: (a) A representative slice of the original vertex function Γ(k1, k2, k3) and the corresponding
reconstructed ones at k3 = 0 and t′ = 0. (b) The reconstruction errors, ||Γ̂−Γ||2

||Γ||2 , at different t′ using
two methods, each with varying latent dimensions. (c) PCA explained variance percentage as a
function of the principal component index. (d) Deep Learning cost function evolution.

and spaced at intervals of 0.01t, and subsequently evaluate the error metric utilizing the entire dataset.
Fig. 1(a) displays a representative test slice of the original vertex function Γ(k1, k2, k3) alongside
the corresponding reconstructed ones at k3 = 0 and t′ = 0. Our findings suggest that a mere few
dimensions can encapsulate the majority of the variance. In the case of PCA, approximately 98% of
the variance is captured within a 4-dimensional space, as depicted in Fig. 1(c). For the autoencoder,
the errors are consistent across different latent spaces, as shown in Fig. 1 (d). For the leading
eigenvalue analysis we simply compared the results from the exact and compressed representation of
vertices corresponding to particular input parameters; these results are shown in Fig. 2.

In Fig. 1(a), the autoencoder yields errors around 7%, exhibiting consistency across varying latent
dimensions. Conversely, PCA displays a continuous decrement in errors as the latent dimension
ascends. Notably, at dim = 2, PCA underperforms in comparison to the autoencoder; And it
surpasses the autoencoder’s performance for dim ≥ 6. Figure 2 shows that Both PCA and the
autoencoder exhibit commendable proficiency in replicating the eigenvalues. However, a notable
deviation is observed when the latent dimension of PCA is less than 3, even though the direct error of
the vertex remains approximately around 20%.

4 PCA Latent space

Because the PCA was found to outperform the autoencoder, we trained the PCA method on the full
data set. The reconstruction errors are similar to the ones using the down-sampled data. We now
discuss the information encoded in the PCA latent space.

Panel (a) of Fig.3(a) displays k3 = 0 slices of the exact vertices computed for parameters such that the
model is in the AF, SC or FM ordered state. We see that the vertices corresponding to AFM and SC
states exhibit similar patterns, which markedly differ from those of the FM orders, suggesting a deep

3

Figure 2: Eigenvalues of the physical orders calculated from the original vertex and the reconstructed
ones.

Figure 3: (a) Slice of the vertex functions at k3 = 0 at three different ground states: antiferromagnetic
(AFM), superconducting (SC), ferromagnetic (FM), and (b) Fermi Liquid (FL) states. (c) Slice of the
first and second PCA axes at k3 = 0. (d) The reconstruction error of the vertex at the FL state.

physical similarity of the AF and SC states. Remarkably, the vertex eigenvector corresponding to the
primary PCA axis contains the structures found in all of the ordered states, but with different signs of
the diagonal (FM) and side (AFM/SC) lines while the second component shows these features with
the same sign; combinations of these two distinguish the two states.

Ordered states are associated with divergent structures in vertices [12]; the non-ordered (Fermi
liquid) state has a vertex function with no divergent structures. We show in Fig. 3 (d) how well the
vertex calculated in the Fermi liquid regime can be represented in terms to the PCA components
learned from the order state regimes. We see that the direct reconstruction error decreases to around
13.5% as more principle component indexes are used, but does not decrease further on adding more
components. Thus the ordered state PCA components are significantly present in the FL vertex, but
some part of the FL vertex is not captured, because the FL state represents a region distinct from the
ordered state.

5 Outlook

The vertex function is an apparently complicated, difficult to calculate function of three momentum
coordinates that encodes important information about the physics of quantum many-body systems.
We have shown using both PCA and autoencoder methods that for a wide range of parameters
encompassing a diversity of physical states, the vertex function of the two dimensional Hubbard

4

model (the “fruit-fly" of electronic condensed matter physics) can be well represented as a point in a
very low (4-12) dimensional latent space. That the apparent complexity of this approach to quantum
many body physics can be so strongly compressed suggests that much more computationally efficient
calculational methods can be devised. The finding suggests important directions for future research
including further investigation into the PCA representation of the FL state, direct application of the
methods devised here to the frequency dependent dynamical vertices required in the dynamical mean
field approach to correlated systems, and over a longer term, reframing calculations so that one can
operate directly on the coefficients of the PCA/autoencoder expansion. Further, our finding that PCA
methods provide a substantially more efficient representation than the standard autoencoder methods
suggests that research into the optimizations required in the autoencoder method may be beneficial.

Software libraries

Neural networks were trained using JAX [13] for array manipulations, automatic differentiation
for sampling and optimization and GPU support, Flax [14] for neural-network construction and
manipulation and NumPy [15] and SciPy [16] for CPU array manipulations. Matplotlib [17] was
used to produce figures.

Acknowledgments and Disclosure of Funding

The research leading to these results has received funding from the NSF MRSEC program through the
Center for Precision-Assembled Quantum Materials (PAQM) - DMR-2011738. MM acknowledges
support from the CCQ graduate fellowship in computational quantum physics. The Flatiron Institute
is a division of the Simons Foundation.

5

References
[1] Sénéchal, D., Tremblay, A.-M. & Bourbonnais, C.

Theoretical methods for strongly correlated electrons (Springer Science & Business Me-
dia, 2006).

[2] Tahvildar-Zadeh, A. N., Freericks, J. K. & Jarrell, M. Magnetic phase diagram of the hubbard
model in three dimensions:the second-order local approximation. Phys. Rev. B 55, 942–946
(1997). URL https://link.aps.org/doi/10.1103/PhysRevB.55.942.

[3] Kuneš, J. Efficient treatment of two-particle vertices in dynamical mean-field theory.
Phys. Rev. B 83, 085102 (2011). URL https://link.aps.org/doi/10.1103/PhysRevB.
83.085102.

[4] Rohringer, G., Valli, A. & Toschi, A. Local electronic correlation at the two-particle level.
Phys. Rev. B 86, 125114 (2012). URL https://link.aps.org/doi/10.1103/PhysRevB.
86.125114.

[5] Murphy, K. P. Probabilistic Machine Learning: An introduction (MIT Press, 2022). URL
probml.ai.

[6] Honerkamp, C. & Salmhofer, M. Magnetic and superconducting instabilities of the hubbard
model at the van hove filling. Physical Review Letters 87, 187004 (2001).

[7] Beyer, J., Hauck, J. B. & Klebl, L. Reference results for the momentum space functional
renormalization group. The European Physical Journal B 95 (2022). URL https://doi.
org/10.1140%2Fepjb%2Fs10051-022-00323-y.

[8] Honerkamp, C. & Salmhofer, M. Temperature-flow renormalization group and the competition
between superconductivity and ferromagnetism. Phys. Rev. B 64, 184516 (2001). URL https:
//link.aps.org/doi/10.1103/PhysRevB.64.184516.

[9] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–44 (2015). URL
http://www.ncbi.nlm.nih.gov/pubmed/26017442.

[10] Hendrycks, D. & Gimpel, K. Gaussian error linear units (gelus) (2016). URL http://arxiv.
org/abs/1606.08415.

[11] Zhai, H., Wang, F. & Lee, D.-H. Antiferromagnetically driven electronic correlations in iron
pnictides and cuprates. Phys. Rev. B 80, 064517 (2009). URL https://link.aps.org/doi/
10.1103/PhysRevB.80.064517.

[12] Metzner, W., Salmhofer, M., Honerkamp, C., Meden, V. & Schönhammer, K. Functional
renormalization group approach to correlated fermion systems. Rev. Mod. Phys. 84, 299–352
(2012). URL https://link.aps.org/doi/10.1103/RevModPhys.84.299.

[13] Bradbury, J. et al. JAX: composable transformations of Python+NumPy programs (2018). URL
http://github.com/google/jax.

[14] Heek, J. et al. Flax: A neural network library and ecosystem for JAX (2020). URL http:
//github.com/google/flax.

[15] Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020). 2006.
10256.

[16] Virtanen, P. et al. Scipy 1.0: fundamental algorithms for scientific computing in
python. Nature Methods 17, 261–272 (2020). URL http://www.nature.com/articles/
s41592-019-0686-2.

[17] Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 99–104 (2007).

6

https://link.aps.org/doi/10.1103/PhysRevB.55.942
https://link.aps.org/doi/10.1103/PhysRevB.83.085102
https://link.aps.org/doi/10.1103/PhysRevB.83.085102
https://link.aps.org/doi/10.1103/PhysRevB.86.125114
https://link.aps.org/doi/10.1103/PhysRevB.86.125114
probml.ai
https://doi.org/10.1140%2Fepjb%2Fs10051-022-00323-y
https://doi.org/10.1140%2Fepjb%2Fs10051-022-00323-y
https://link.aps.org/doi/10.1103/PhysRevB.64.184516
https://link.aps.org/doi/10.1103/PhysRevB.64.184516
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://link.aps.org/doi/10.1103/PhysRevB.80.064517
https://link.aps.org/doi/10.1103/PhysRevB.80.064517
https://link.aps.org/doi/10.1103/RevModPhys.84.299
http://github.com/google/jax
http://github.com/google/flax
http://github.com/google/flax
2006.10256
2006.10256
http://www.nature.com/articles/s41592-019-0686-2
http://www.nature.com/articles/s41592-019-0686-2

	Introduction
	Physics model
	Compression loss: Comparison between PCA and the autoencoder
	PCA Latent space
	Outlook

