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Abstract

Deep learning models have been shown to outperform methods that rely on sum-
mary statistics, like the power spectrum, in extracting information from complex
cosmological data sets. However, due to differences in the subgrid physics imple-
mentation and numerical approximations across different simulation suites, models
trained on data from one cosmological simulation show a drop in performance
when tested on another. Similarly, models trained on any of the simulations would
also likely experience a drop in performance when applied to observational data.
Training on data from two different suites of the CAMELS hydrodynamic cosmo-
logical simulations, we examine the generalization capabilities of Domain Adaptive
Graph Neural Networks (DA-GNNs). By utilizing GNNs, we capitalize on their
capacity to capture structured scale-free cosmological information from galaxy dis-
tributions. Moreover, by including unsupervised domain adaptation via Maximum
Mean Discrepancy (MMD), we enable our models to extract domain-invariant
features. We demonstrate that DA-GNN achieves higher accuracy and robustness
on cross-dataset tasks (up to 28% better relative error and up to almost an order of
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magnitude better χ2). Using data visualizations, we show the effects of domain
adaptation on proper latent space data alignment. This shows that DA-GNNs are a
promising method for extracting domain-independent cosmological information, a
vital step toward robust deep learning for real cosmic survey data.

1 Introduction

Accurate determination of cosmological parameters using big data from astronomical surveys is a task
of paramount importance in modern science. Historically, the extraction of valuable cosmological
information has relied on computing summary statistics [31, 16, 15]. More recently, deep learning
methods, such as 2D and 3D Convolutional Neural Networks (CNNs), showed great promise in ex-
tracting rich non-linear information that summary statistics struggle to capture [32, 39, 29]. However,
CNNs lack scale-invariance, as their analysis is firmly anchored to the grid size of the convolutional
kernels, while any information on scales below that is lost. Choosing a superfine grid to avoid
information loss, though, would simply yield almost entirely zeros in case of sparse and irregular
data, such as galaxy clusterings. Thus, CNNs result in an inadequate method for structured sparse
data. In contrast, Graph Neural Networks (GNNs) [23, 4, 49, 46] can handle structured cosmic web
data in a scale-free manner [41, 14]. As with any other model, the typical procedure is to train GNNs
on labeled data (like simulations) and then infer cosmological parameters from unlabeled data (like
observations). However, there is a significant risk of these models not generalizing in the presence of
the domain shift between simulations and observations. Systematic biases have been demonstrated
even in experiments that train and test on simulations with different subgrid physics [41]. Domain
adaptation (DA) techniques [11, 43, 18, 27] can be used to increase model robustness to this type of
domain shift. Here we propose the use of Domain Adaptive Graph Neural Networks (DA-GNNs)
and investigate the utility of distance-based DA losses i.e., Maximum Mean Discrepancy (MMD) [6].
MMD is an unsupervised DA technique because it does not require labeled data, which is paramount
for future applications on observations. We show that our domain-adaptive models achieve stronger
generalization across datasets than regular GNN models. Our work is a significant step towards
building future models trained on simulations, yet robust enough to work on observational data.

Related Work GNNs have shown great potential for extracting information from large sparse
datasets, such as the distribution of galaxies, galaxy clusters, and cosmic large-scale structure [25, 28,
41, 33, 42, 14]. Unfortunately, due to the complexity of most deep learning models, they often learn
dataset-specific features, which renders them useless when testing on a different dataset (different
simulations or astronomical observations). In astronomy, it has been shown that DA techniques
applied to different types of CNNs can substantially improve model performance in cross-dataset
applications [8, 10, 9, 37, 21, 2]. Recently, it has been shown that DA can be used on other types of
deep learning algorithms such as GNNs [12, 24, 45, 47, 7, 44, 17]. However, DA on GNNs has not
been used for any astrophysics or cosmology applications.

2 Data and Methods

Data We use galaxy catalogs from the CAMELS [38] magneto-hydrodynamic simulations, which
follow the evolution of dark matter particles and fluid elements (baryons) from redshift z = 127 to
z = 0. We use snapshots at z = 0 from two different simulation suites: 1) IllusrisTNG [30] was
generated with Arepo2 1 and employs the IllustrisTNG subgrid physics model; 2) SIMBA [13] was
generated with Gizmo3 2 and employs the SIMBA subgrid physics model. Using two independent
models and codebases to simulate galaxies, cosmic gas, and large-scale structure is critical to assess
the generalization potential of the machine learning models. In particular, we use the LH set of both
suites, which contains 1000 simulations evolved with different random seeds and different values of
two cosmological parameters (total matter density Ωm and the amplitude of density fluctuations σ8)
and four astrophysical parameters (ASN1, ASN2, AAGN1, AAGN2 related to supernovae efficiency
and active galactic nuclei (AGN) feedback, respectively)3. We use the following features from the
galaxy catalogs as input to our models: 3D positions, stellar mass M⋆, stellar radius R⋆, stellar
metallicity Z⋆, and maximum circular velocity Vmax.

1https://arepo-code.org/
2http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
3CAMELS dataset documentation: https://camels.readthedocs.io/en/latest/index.html
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Methods Following [41], we generate graphs from 3D galaxy catalogs; these graphs are rotation
and translation invariant with respect to the catalogs themselves. We later feed them as inputs to the
DA-GNN, using the same architecture as in [41], to allow for fair comparison of the results, with the
addition of DA techniques. The model is composed of two parts. The first part is a graph encoder that
transforms the graphs into a vector in the latent space through graph blocks [4]. The second part is a
simple feedforward network that performs regression, predicting the posterior mean µ and standard
deviation σ of the Ωm cosmological parameter. This can be achieved by minimizing the following
loss [26, 40]:

Lµ,σ = log(
∑

i∈batch

(Ωm,i − µi)
2) + log(

∑
i∈batch

((Ωm,i − µi)
2 − σ2

i )
2), (1)

where Ωm,i is the ground-truth value for the i-th sample in the training set batch, and µi and σi are
the mean and standard deviation, respectively, predicted for sample i.

2.1 Domain Adaptation

Our objective is to create models that generalize across domains i.e., cosmology simulations with
different subgrid physics implementations. To assess this, we train on IllustrisTNG and test on
SIMBA – and vice versa. We experiment with the use of MMD, a distance-based DA technique.
MMD measures the distance of two probability distributions, based on the notion of embedding
probabilities in a reproducing kernel Hilbert space. We include an MMD-based component in the
network loss function, following [8, 48]. For two distributions Z1 and Z2 (with N samples each),
this is calculated as:

LMMD = log(
1

N − 1

N∑
i ̸=j

[k(z1i , z
1
j ) + k(z2i , z

2
j )− k(z1i , z

2
j )− k(z2i , z

1
j )]), (2)

where k is the Gaussian Radial Basis Function kernel and zpq is the sample q of distribution p (Z1 or
Z2) [6, 34, 22, 48, 8]. The loss is calculated on the latent space distributions produced by the graph
encoder when processing samples from SIMBA and IllustrisTNG sets. Our final objective function
is L = Lµ,σ + λLMMD, where λ ≥ 0 controls the relative contribution of the MMD loss and is a
hyperparameter of the model. We find that λ ≈ 0.1 for the best-performing models in this work. The
MMD component of the total loss causes the graph encoder to generate similar latent distributions
for both simulations, which will improve the performance of the regressor on cross-dataset tasks.

Optimization and Computing Resources We performed experiments on NVIDIA A100 40GB GPU.
For each of the models, implemented using PyTorch Geometric [19], we perform a hyperparameter
search using the Optuna library[1], with 50 trials per model. More details on code performance,
model implementations, and selected hyperparameters can be found in the publicly available code4.

2.2 Evaluation

We split both IllustrisTNG and SIMBA data into training/validation/testing sets with a proportion of
70%/15%/15%. During training, we save the final models at the epoch with the best validation score.
For performance metrics, we use the mean relative error ϵ (reported in percentages), the coefficient of
determination R2, and the χ2 (N = 150 test points), measured as:

ϵ =
1

N

N∑
i=1

|Ωm,i − µi|
Ωm,i

, R2 = 1−
∑N

i=1(Ωm,i − µi)
2∑N

i=1(Ωm,i − Ωm)2
, χ2 =

1

N

N∑
i=1

(Ωm,i − µi)
2

σ2
i

, (3)

where Ωm is the mean of Ωm value in the test set. A value of χ2 close to 1 suggests that the standard
deviations are correctly predicted and can be seen as minimizing the second term of Equation 1. A
higher (lower) value can be seen as an underestimation (overestimation) of the uncertainties[3].

4https://github.com/deepskies/GNN_DomainAdapt
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Table 1: Comparison of results: No Domain Adaptation (top) and MMD (bottom).
I -> I I -> S S -> S S -> I

R2 ϵ χ2 R2 ϵ χ2 R2 ϵ χ2 R2 ϵ χ2

NoDA 0.97 5.0 1.39 -1.04 43.8 59.43 0.97 5.2 1.79 0.22 25.0 185.54
MMD 0.97 4.7 1.12 0.69 15.7 17.99 0.97 5.9 1.54 0.68 16.7 19.96

3 Results

DA-GNN achieves significantly better results (up to 28% better relative error ϵ and up to almost
an order of magnitude better χ2) on cross-domain generalization with respect to CosmoGraphNet,
whilst achieving comparable results on the same domain test set 5, as shown in Table 1 and Figure 1.
In [39], the authors were able to infer the value of Ωm with higher cross-domain accuracy. However,
that analysis utilizes the full matter surface density maps i.e., 2D images, instead of the full 3D galaxy
distributions. In [14], the authors propose a GNN-based model that performs well cross-domain
when trained on the Astrid simulation [5] alone. However, this apparent robustness is achieved by
choosing Astrid as the training set and by using input features that are less subject to simulation code
variability – galaxy positions and 1D velocities. When authors try training on other simulations or
using more simulation-dependant parameters (e.g., stellar mass), cross-dataset performance drops
significantly. Therefore, domain-shift robustness across different cosmological datasets requires DA.

Figure 1: Comparison of models without (top row) and with DA (bottom row), trained on the SIMBA
suite. Training data graphs include 3D positions, maximum circular velocity Vmax, stellar mass M⋆,
stellar radius R⋆, and stellar metallicity Z⋆. From left to right, we report: a scatter plot for the value
of Ωm on 1) the same domain, 2) cross-domain and 3) the isomap showing how the GNN is encoding
the two datasets in the latent space (SIMBA - triangles, IllustrisTNG - circles)6. In the non-domain
adapted isomap, ellipses highlight regions where distributions lie, showing the difference between
simulation encodings that leads to a substantial drop in performance on the cross-domain task.

Latent space organization Isomaps are two-dimensional projections of the multi-dimensional latent
space [35]. Figure 1 shows the difference in the latent space structure without (top row) and with
(bottom row) DA. Ellipses in the top right isomap highlight how the two distributions are encoded in

5In [41], authors get slightly better results for the same domain, and slightly worse for the cross-domain
tests. We impute these differences to choices such as batch sizes and optimization techniques we took due to
computational and time constraints.

6In Appendix A, the IllustrisTNG counterpart of this plot is presented.
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different regions of the latent space. Without the MMD loss, the model encodes samples with very
different values of Ωm close to each other, if they originate from different simulations (circles and
triangles of different colors are overlapping). This scenario leads to the fragility of the regressor,
which cannot learn to output different values for the same latent space encodings. On the contrary,
the DA-GNN (bottom right plot) correctly encodes the samples in a domain-invariant way. Visually,
circle and triangle distributions are overlapping, which indicates domain mixing. Furthermore, the
direction in the color gradient shows that the DA-GNN encodes information such that the regressor
can now more correctly predict cosmological parameters based on the encodings of both simulations.

4 Conclusions

We propose and demonstrate a method for unsupervised DA for cosmological inference with GNNs.
We use an MMD-based loss to enable the domain-invariant encoding of features by the GNN. This
approach enhances cross-domain robustness: compared to previous methods, DA-GNNs reduce
prediction error and improve uncertainty estimates.

Limitations The cross-domain accuracy remains worse when compared to single-domain perfor-
mance. Although reaching the same accuracy might not be possible, more flexible approaches such
as adversarial-based DA techniques [20, 36], instead of distance-based ones such as MMD, might
yield better results. Moreover, due to computational and time constraints, our models have been
trained and tested only on two of the four available CAMELS simulation suites. Using more suites
would yield better cross-domain efficacy and reliability at assessment time. These limitations will be
addressed in future work.
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A Additional Plots

Figure 2: Comparison of models without (top row) and with DA (bottom row), trained on the
IllustrisTNG suite. Training data graphs include 3D positions, maximum circular velocity Vmax,
stellar mass M⋆, stellar radius R⋆, and stellar metallicity Z⋆. From left to right, we report: a scatter
plot for the value of Ωm on 1) the same domain, 2) cross-domain and 3) the isomap showing how
the GNN is encoding the two datasets in the latent space (IllustrisTNG - triangles, SIMBA - circles).
In the non-domain adapted isomap, ellipses highlight regions where distributions lie, showing the
difference between simulation encodings that leads to a substantial drop in performance on the
cross-domain task.
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