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Abstract

Solving optimization problems via neural networks has proven to be a promising
approach in yielding better solutions. However, the full potential of parameter-
ized models has yet to be fully explored. Motivated by the success of variational
quantum optimization with multibasis encodings, we propose a quantum-inspired
machine learning algorithm that integrates both approaches to reduce the system
size as well as parameters in a neural network ansatz. We demonstrate the perfor-
mance of the proposed algorithm by solving Ising chain systems, resulting in faster
convergence towards the ground state energy. This study holds the potential for
widespread applications across various fields that require efficient optimization for
large-scale problems.

1 Introduction

Solving optimization problems plays a crucial role as a stepping stone in many practical fields, such
as artificial intelligence, bioinformatics, and cloud computing [[1]]. Unfortunately, most of these
problems are hard to solve in an acceptable time. Over the past few decades, numerous heuristic
techniques have been proposed to find approximate solutions to these problems. One popular method
is Simulated Annealing (SA), which can avoid the slow sampling of the Monte Carlo approach [2, 3]].
By substituting the conventional simulated annealing with the annealing of a parameterized model,
the Variational Neural Annealing (VNA) approach was introduced [4]], and they have shown that
VNA offers a powerful alternative to solve optimization problems.
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Figure 1: (a) An illustration of RNN Wave functions. At each step, the input o;_; (blue) is fed into
the Recurrent Neural Network cell (RNN) along with h;_; to generate the next hidden state h;. The
hidden state h; is used to generate conditional probabilities, px(0;|0<;), via the Softmax activation
(S) and individual phases, ¢y (o;), via the SoftSign activation (SS). The procedure is then iterated
until oy has been obtained. (b) A comparison between traditional and multibasis encodings. For fully
connected a 4-node problem, traditional encodings use only Z Pauli operators (blue) and optimize via
a cost function £, but multibasis encodings exploit both Z and X Pauli operators (blue and orange,
respectively) and optimize via a cost function LMPF (see definition in text). (c) The annealing process
can be adapted to improve the performance of the training algorithm. The global minimum (Crystal
state) is expected if the decrease of pseudo temperature is slow enough compared to fast change,
leading to getting stuck at a local minimum (Metastable state). (d) Benchmark of our algorithms for
solving the Ising chain model with positive random coupling [0, 1). The traditional encodings (VCA)
for problem size N = 32 and 64 can be encoded with Ny = 16 and 32 for multibasis encodings
(VNAM), respectively. Residual energy per spin (€5 /) obtained by VNAM reaches 10~8 within
only 10% annealing steps (Nannealing)-

In addition to classical algorithms, there is also significant interest in developing variational quantum
algorithms to solve NP-hard optimization problems, such as the Variational Quantum Eigensolver
[5) 6] and the Quantum Approximate Optimization Algorithm [7, [8]. However, many quantum
algorithms are limited by their high requisite circuit depth and non-convexity. To address these
limitations, variational quantum optimization with MultiBasis Encodings (MBE) was introduced in
[9] successfully optimizing of the MaxCut problem while requiring fewer quantum resources.

In this work, we propose a new quantum-inspired machine learning algorithm as an alternative
approach to solving large-scale combinatorial optimization problems. The main contribution of our
work is combining two ideas from a different field: Recurrent Neural Networks (RNN) wave functions
from machine learning algorithms and the multibasis encoding techniques from a quantum algorithm
as shown in Fig. [T(a) and (b), respectively. For more details please refer to [10] and [9]. Specifically,
we substitute the positive RNN in traditional VNA with a complex RNN. Additionally, the algorithm
is enhanced using fewer parameters through multibasis encoding, enabling the computation of more
expectation values from a smaller RNN ansatz. In addition to the multibasis encoding feature, we
enhanced the algorithms by annealing techniques as shown in Fig. [Ifc), which can be used to
avoid local minimum [4]]. This combined algorithm offers a new way to solve large-scale problems
efficiently in a wide array of fields [11} 12} [13]

2 Multibasis Encodings in Recurrent Neural Network Wave Functions

Multibasis encodings (MBE) were proposed as a quantum optimization algorithm aimed at reducing
susceptibility to local minima in the training landscape and it has demonstrated the ability to solve
MaxCut optimization problems for various graphs [9]. The key ingredient of MBE is encoding
variables into two (or more) qubit axes to modify the loss function and evaluate the product of
expectation values of each single-qubit term. As a result, MBE halves the number of qubits required
for a given optimization problem. To construct the MBE loss function, the Hamiltonian formed
by the product of the operators would not be suitable since the quantum ground state it encodes
does not correspond to the true ground state. Instead, we can consider the products of single-qubit



measurements (X;) and (Z;), where X; and Z; are Pauli operators for qubit ¢, in which (X;) and
(Z,;) operators are simultaneously optimized. This approach yields the MBE loss function denoted as

n/2 n/2 n/2
LR = Wi S () () + D _wi (wj)+2wff (20) (), ()
Jj<i j<i ji

where wy; b is the coupling between site 7 and j with Pauli operators a and b, respectively. We define
x; and z; as the shorthand of single-qubit measurement of X; and Z; for qubit ¢, and f(z) is an
activation function, which plays a role as a nonlinear function to enhance the expressibility of the
algorithm. It is used to introduce non-linearity and capture more complex relationships between
variables. This procedure is graphically depicted in Fig. [I{b) for the four-qubit encoding.

Motivated by the success of MBE, we leverage it to enhance the utility of RNN wave functions.
Our approach involves encoding multiple variables into a single qubit and performing simultaneous
optimization through variational neural optimization. Instead of using variational neural annealing to
find the ground state from minimizing the expectation value of the target Hamiltonian, we substitute
it with parameterized loss function with multibasis encodings £¥BE from Eq. and the gradients
can be computed by
n/2
L‘MBE Zw [(2))0nzj + 21 <> 25 + . 2)
j<i

3 Incorporating classical annealing

The key components of the conventional annealing formulation include the Metropolis-Hasting
algorithm, which enables the search for equilibrium by slowly decreasing the temperature to zero,
mimicking the physical annealing process as shown in Fig. [T[c). The procedure terminates when
the temperature reaches zero, at which point the solution is expected to be found. However, this
formulation can only provide a quasi-distribution due to finite-time issues [14, 3] and may suffer
from slow sampling when the optimization landscape is rough.

Fortunately, RNN wave functions have proven to be suitable candidates as variational wave functions
for approximating ground state energies, correlation functions, and other properties [[10]. To incorpo-
rate annealing for RNN ansatz, we first encode the problem in a target Hamiltonian Ha,get and add
an entropy term to form a new cost function:

FA(T) = (Harges)r + T ) pa(0) log(pa(0)), ()

where the second term is related to pseudo temperature, 7', and probability of obtaining some
configuration, p(o), that is analogous to thermal fluctuation. By the end of the annealing process
(T = 0), we expect to obtain the ground state of the target Hamiltonian.

Here, we can exploit an annealing procedure similar to Eq. (3) to improve the performance of finding
the ground state of the MBE loss function. Following the essence of the annealing process, we modify
the pseudo-free energy loss function as

LY(T) = LYPE + T pa(o) log(pa(0)) “

We note that using the activation function as the f(z) = tanh(z) in MBE as in the original text
provides a cost function where local and global minima are close to each other, resulting in fluctuations
during annealing that can lead to getting stuck in local minima. To address this issue, we introduce the
new activation function f(z) = sin(w2/+/2). This activation function helps increase the difference
between local and global values by extending the expectation values to be 1 in both axes. Additionally,
the lowest value of the cost function with the sin activation corresponds to the global minima of the
original target Hamiltonian.

After the training process, we sample millions of samples from the RNN wave function to evaluate
the expectation value for each Pauli operator and each spin. We obtain the ground state configura-
tions by performing a rounding procedure (interpreting positive expectation values as spin-up and
negative values as spin-down). The ground state energy can be computed by substituting the rounded
expectation values (z;, z; € {—1,1}) in Eq. (I).



4 Numerical experiment: Ising chain with positive random coupling

As benchmarking, we consider the simple Ising model with positive random coupling J; ;41 sampled
from a uniform distribution in [0, 1). The Hamiltonian can be written as

N—1

Hiarget = — Z Jii41030i41- (5)
Notice that the ground state configuration is given by either all spin up or down, and then the
ground state can be calculated by summing all couplings, i.e., Eg = — > J; ;+1. To quantify the
performance of our algorithms, we use the residual energy as used in [4]],

€res — [<Htarget>)\ - EG]dis’ (6)
where (...), is the arithmetic mean of samples from RNN wave function and [...]gs =

exp(In({...))) is the average of €5 over different realizations and initialization.

In Fig. |1|(d), we investigate the Ising chain model for the different number of sites (/V) with N = 32
and N = 64 which can be encoded with Ny = 16 and Ng = 32, respectively. We conduct
25 realizations of coupling. The RNN wave function is then utilized to optimize the system and
determine the ground state energy and the threshold is set at €65 = 1077.

To benchmark our proposed algorithms, we compare our algorithms against the Variational Classical
Annealing (VCA), as indicated by the yellow and blue lines for 32 and 64 sites, respectively, which
has been shown to yield the best results in [4]. For N = 32 (or Ng = 16), within 103 steps of
annealing, VCA achieves residual energy levels of approximately 10~°, as shown in the orange
line in Fig. [T](d). The introduction of the multibasis encodings to the algorithm successfully offers
fast convergence allowing us to find the ground state energy more effectively. Variational Neural
Annealing with Multibasis encodings (VNAM) can reach 10~ 7 within 10% steps of annealing (green
line). Interestingly, in the case of N = 64 (or Ng = 32), VCA algorithm provides similar trend
as N = 32 (blue line), but VNAM (red line), and we observe rapid convergence to small residual
energy (10~7) within just 10 annealing steps, which is contrast to the trend observed in Ref. [4].
This outcome indicates that the combination of multibasis encodings and annealing significantly
outperforms VCA when dealing with large-scale problems.

5 Conclusion and outlook

We have proposed a quantum-inspired machine learning algorithm that combines variational neural
optimization, multibasis encodings, and the annealing method. By leveraging multibasis encodings,
we are able to reduce the number of parameters in the parameterized model. Additionally, the
annealing method ensures that the algorithm approaches the approximate ground state.

We have shown a comparison with the VCA approach for solving the Ising chain model with positive
random coupling. The VNAM algorithms outperform traditional methods VCA, exhibiting rapid
convergence, leading to lower residual energy levels. Moreover, the utilization of the sin activation
function further contributes to superior performance by effectively suppressing fluctuations. These
findings highlight the potential of sin activation. We note that the results can be further improved by
a more careful choice of the hyperparameters and vertex partitioning.

Future research directions in this field could involve the exploration of these techniques in other
advanced generative models besides the RNN, such as Transformer architecture. The other next
research direction is the investigation of the influence of different multibasis encodings on the
accuracy of the solutions. More precisely, there is potential to investigate the advantages of encoding
more basis states in a single qubit using high dimensional orthogonal bases to reduce system size.
This approach can fully maximize the utility of RNN wave functions in solving large-scale problems
and have widespread applications in various fields, providing a promising route toward efficient
solutions to real-world optimization problems in science, industry, and technology.



Broader Impact

Our work focuses on improving the algorithm for solving large-scale combinatorial optimization
problems. Any combinatorial problems can be solved by our method. Specifically, the problem with
problem size N can be turned to and solved by N/2 parameters in a neural network. This method
has fruitful applications for real-world optimization problems, such as traveling salesman problems,
finding the ground state of quantum many-body systems, etc.
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