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Abstract

We present a method for the unsupervised segmentation of electron microscopy
images, which are powerful descriptors of materials and chemical systems. Images
are oversegmented into overlapping chips, and similarity graphs are generated
from embeddings extracted from a domain-pretrained convolutional neural network
(CNN). The Louvain method for community detection is then applied to perform
segmentation. The graph representation provides an intuitive way of presenting
the relationship between chips and communities. We demonstrate our method
to track irradiation-induced amorphous fronts in thin films used for catalysis and
electronics. This method has potential for “on-the-fly” segmentation to guide
emerging automated electron microscopes.

1 Introduction

The development of new technologies for energy storage, quantum computing, and many other
applications is predicated on the design of better performing materials. It is important to understand
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not just the intrinsic structure of materials, but also how they evolve in real-world environments of
high temperature, radiation, and pressure [1]. Scanning transmission electron microscopy (STEM)
is a data-rich analytic technique to study the dynamic evolution of materials down to the atomic
level.[2] Recent interest in coupling STEM with machine learning (ML)-driven analytics to process
and interpret microscopy images in real time has opened a path toward autonomous in situ STEM
experimentation [3]–[8]. Because it is difficult to procure high-quality labeled training data, many
past approaches have relied on synthetic data,[9] while some have focused on sparse data approaches
[10], [11]. It is becoming increasingly clear that unsupervised approaches that do not rely on extensive
a priori knowledge of the sample are key to creating a general analysis framework for microscopy
data [9], [12].

ML has shown promise for the common workflow of identifying structural defects in STEM images
with high throughput and veracity [13], facilitating the discovery of structure-property relationships
in materials systems [14]. Complex oxides are compelling candidates for such analysis, as their
valuable technological properties are sensitive to even trace amounts of defects [15], [16]. When
these materials are deployed, radiation can increase defect populations [17], impacting performance
and leading to early device failure. To this end, the various structural regions present in the irradiated
material must first be quantified, a task well suited to data-driven STEM analysis. However, we
presently lack robust ML analytics to generalizably describe such defect formation, which is necessary
to derive more accurate physical models and improve material performance.

Here, we present a method for the unsupervised segmentation of structural regions within STEM
images through the combination of pretrained classification models and graph theory. Embeddings
of overlapping superpixels are extracted from a ResNet50 model pretrained on a large dataset of
microscopy images [18]. A graph is formed based on the pairwise similarity of the embeddings. The
Louvain method [19] is used to identify communities within the graph, which correspond to various
structural regions in the material. This approach provides a means to analyze electron microscopy
data absent a priori knowledge and shows promise to describe order-disorder phase transitions in
emerging functional materials.

2 Related Work

Supervised segmentation of crystalline materials has been widely performed for various types
of electron microscopy images [3], [18], [20]–[23], while unsupervised segmentation has been
comparatively less studied. Akers et al. developed pyCHIP, a few-shot approach for oversegmentation
of STEM images that is robust against noise and requires less data than conventional segmentation
methods [11]. In the pyCHIP method, an image is oversegmented into non-overlapping squares,
embeddings are extracted from a pretrained classification model and the embeddings of each chip
are compared against a small set of hand-selected prototype chips. We note that the unsupervised
method discussed in this paper moves beyond pyCHIP, since the present approach does not require
labeled data and utilizes a microscopy-specific encoder to compute embeddings. Other unsupervised
approaches for STEM images have applied statistical clustering methods to some type of descriptor.
For instance, Wang et al. applied principal component analysis (PCA) and k-means clustering on
local features obtained from symmetry operations for unsupervised clustering of STEM high-angle
annular dark field (STEM-HAADF) images [24]. To identify nanoparticles in STEM images, Wang
et al. applied k-means clustering followed by naive Bayes classification to a set of geometric shape
descriptors [25].

It has been recently shown that the unsupervised segmentation of digital photographs can be achieved
by combining image features or learned embeddings and graph theory. Jiao et al. applied graph
clustering to high-dimensional embeddings obtained from an autoencoder fed low-level visual features
of color, edge, gradient, and image saliency [26]. Melas-Kyriazi et al. performed spectral clustering
on a graph Laplacian matrix formed from a combination of color information and unsupervised deep
features [27]. Aflalo et al. incorporated node features derived from pre-trained neural networks into
the graph and performed clustering using a graph neural network trained on a loss function based on
classical graph clustering algorithms [28]. While graph-based image segmentation existed prior to
the widespread use of deep-learning-based segmentation [29], [30], these approaches have not yet
been widely applied to electron microscopy data.
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3 Methods

Figure 1: Workflow of the unsupervised segmentation method. A STEM-HAADF image is decom-
posed into overlapping chips, which represent a node in the similarity graph. Edges are determined
based on the similarity between the embeddings of chip pairs. Louvain community detection is
applied to the graph, and the segmentation map is generated by overlaying the community of each
chip onto the STEM-HAADF image. The STEM-HAADF image is taken along the STO [1 0 0]
zone-axis.

Figure 1 demonstrates the workflow involved in our unsupervised segmentation method. First, a
STEM-HAADF image is oversegmented into overlapping square chips containing a 4× 4 region of
the atomic lattice. Embeddings for each chip are extracted from a CNN with a ResNet50 architecture
pretrained on the MicroNet dataset [18]. Pairwise distances are computed in the embedding space
for each chip using the cosine distance metric. The distances are normalized into similarity scores
on the unit interval [0, 1]. A score of “0” corresponds to the most dissimilar pair of chips whereas a
score of “1” corresponds to the most similar pair of chips in the image. The scores can naturally be
organized using a complete graph in which all chips are represented as nodes and edges are weighted
by the similarity scores. The edges can be further filtered to reduce the connectivity of the graph and
produce communities of similar chips by removing edges with weights below a certain threshold
value. Formatting the chip embedding similarities as a graph enables the use of graph-based clustering
methods to identify regions in the image. Here, we use the Louvain method, which aims to optimize
the modularity, which provides a measure of the division of the graph into discrete communities.

4 Results & Discussion

To demonstrate this method, we examine STEM-HAADF images of an epitaxial thin film at three
levels of irradiation—0, 0.1, and 0.5 displacements per atom (dpa)—which introduces increasing
structural disorder. The single-crystal substrate consists of SrTiO3 (STO), on which a perovskite
LaFeO3 (LFO) thin film was grown [31]. The material was then irradiated to 0.1 and 0.5 dpa, after
which a protective Cr cap was sputtered on the film surface. Cross-sectional STEM samples were then
prepared, as described in [31]. The Cr cap is polycrystalline and does not display a lattice structure
in the STEM-HAADF image, in contrast to the LFO and STO layers which show clear perovskite
lattices prior to irradiation.

To reduce connectivity and expose partitions of similar chips, thresholding is applied to the complete
graph prior to using the Louvain method. The choice of thresholding value has a noticeable impact
on the communities detected by the Louvain method. Because the similarity distribution will be
different for each image, we examine a series of thresholding values relative to the distribution: the
mean, median, and mode. As demonstrated in Figure 2 of the image prior to irradiation, increasing
the thresholding value results in more fine-grained segmentation of the image into the layers visible
in the original STEM-HAADF image.

Notably, thresholding at the lowest level (the mean) segments the image into two regions: one
representing material with a clear crystalline lattice and one representing the chromium cap where
no lattice is visible. Increasing the thresholding value from the mean to the median of the similarity
distribution leads to segmentation of LFO in the crystalline region. Finally, when increasing the
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Figure 2: Similarity distribution and segmentation maps for the film prior to irradiation (0 dpa)
thresholded at the mean (red), median (green), and mode (blue) of the similarity distribution.

thresholding value from the median to the mode, both the LFO and STO layers as well as the surface
are clearly differentiated.

Irradiation of the surface induces atomic rearrangement with associated loss of crystallinity (amor-
phization) [2], creating an amorphous front that travels further down the lattice with increased
irradiation. Figure 3 shows the segmentation results for samples irradiated at 0, 0.1, and 0.5 dpa.
Edge thresholding was applied at the mode of the corresponding similarity distribution. The segmen-
tation shows a demarcation between the amorphous and crystalline regions. Prior to irradiation, this
demarcation relates to the interface between the LFO and the chromium cap. After irradiation, this
demarcation follows the line of amorphization in the LFO layer. Amorphous regions in the LFO layer
appear as sections of near uniform intensity, indicating a lack of ordered atomic columns. Varying
levels of disorder produce images somewhere between the highly ordered atomic columns and com-
pletely amorphized regions. Our segmentation method identifies varying levels of amorphization in
the LFO layer of samples irradiated to 0.1 and 0.5 dpa.

Figure 3: Cross-sectional STEM-HAADF images (top), seg-
mentation maps (middle), and similarity graphs (bottom) for
films irradiated to 0 (left), 0.1 (center), and 0.5 dpa (right).

In the irradiated samples, STO does
not segment into a single region. We
believe this may be an artifact of a loss
of focus in the lateral scan direction.
Prior to irradiation, the focus is con-
sistent across the image. For the 0.1
dpa sample, the right side of the im-
age is more in focus than the left, and
for the 0.5 dpa sample, the left side
is more in focus than the right. These
minor differences in focus results in
slightly reduced similarity values. No-
tably, the communities comprising the
STO layer are tightly integrated in
the similarity graphs of the irradiated
samples. Therefore, the identification
of separate communities in the STO
phase may be an artifact of the use of
a heuristic algorithm for modularity
optimization by the Louvain method.

5 Conclusions

In this work, we present a method for
the unsupervised segmentation of STEM-HAADF images. Images are oversegmented into overlap-
ping chips, and embeddings for each chip are extracted from a CNN pretrained on a microscopy
dataset. A graph is generated based on the similarity of embeddings, to which edge thresholding and
the Louvain method are applied. The identified communities represent segmented regions in the im-
age. Notably, we show that our method can be applied to identify irradiation-induced amorphization
in atomic-resolution STEM images.
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Because the resulting similarity scores depend on the encoder from which the chip embeddings
are extracted, the use of different encoders will lead to variations in the similarity graph, which
could either improve or weaken the segmentation results. In our case, the encoder trained on a
microscopy-specific dataset produced effective microstructure feature representations that facilitated
the identification of amorphous fronts in STEM images. As noted in prior work on the segmentation
of microscopy data [11], this approach is sensitive to microscope parameters [32], as well as carbon
contamination [23], which must be carefully considered to obtain reliable results. Furthermore, the
incorporation of additional modalities has potential to improve classifier performance. For instance,
energy-dispersive X-ray spectroscopy (EDS), which identifies elemental species, will aid in the
separation of both discrete material layers and amorphized regions subject to radiation-induced
segregation.

6 Broader Impact

Segmentation is a critical step in the determination of structure-property relationships in many im-
portant materials and chemical systems. Often, this segmentation is performed by domain experts,
limiting throughput and standardization efforts. Present applications of ML in materials character-
ization problems have typically relied on training neural networks for specific tasks, thus lacking
transferability to other tasks. In many instances, there is not enough data to produce reliable training
results. Moreover, when there is enough data to train models, it must be painstakingly labeled by a
domain expert. We aim to ultimately eliminate the need for a user to prepare labeled data, even small
amounts like what is required by few-shot approaches. Thus, transitioning from a semi-supervised,
few-shot approach to a completely unsupervised, clustering approach to microscopy image seg-
mentation. Though the current approach is relatively slow compared to the expert-labeled few-shot
approach, further workflow optimization can help facilitate the use of this method in an automated
STEM platform [6], [33].
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