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Abstract

Kilonovae are a class of astronomical transients observed as counterparts to merg-
ers of compact binary systems, such as a binary neutron star (BNS) or black
hole-neutron star (BHNS) inspirals. They serve as probes for heavy-element nucle-
osynthesis in astrophysical environments, while together with gravitational wave
emission constraining the distance to the merger itself, they can place constraints
on the Hubble constant. Obtaining the physical parameters (e.g. ejecta mass,
velocity, composition) of a kilonova from observations is a complex inverse prob-
lem, usually tackled by sampling-based inference methods such as Markov-chain
Monte Carlo (MCMC) or nested sampling techniques. These methods often rely
on computing approximate likelihoods, since a full simulation of compact object
mergers involve expensive computations such as integrals, the calculation of like-
lihood of the observed data given parameters can become intractable, rendering
the likelihood-based inference approaches inapplicable. We propose here to use
Simulation-based Inference (SBI) techniques to infer the physical parameters of
BNS kilonovae from their spectra, using simulations produced with KilonovaNet.
Our model uses Amortized Neural Posterior Estimation (ANPE) together with an
embedding neural network to accurately predict posterior distributions from simu-
lated spectra. We further test our model with real observations from AT 2017gfo,
the only kilonova with multi-messenger data, and show that our estimates agree
with previous likelihood-based approaches.

Machine Learning and the Physical Sciences Workshop, NeurIPS 2023.



1 Introduction

The coalescence of binary neutron stars (BNS) or black hole-neutron star (BHNS) systems are
prime sources of gravitational waves (GW) observed by Advanced LIGO/Virgo (Collaboration et al.
2015} Acernese et al.[2014), and also power bright electromagnetic (EM) transients. The so called
multi-messenger observations offer insights into the properties of matter under extreme conditions
and can be used to infer parameters of the BNS merger and constrain the neutron star equation of
state (Radice et al. 2018; Margalit and Metzger 2017), as well as the Hubble constant both from
standard sirens or dark sirens perspectives (Coughlin et al.[2020; Bom and Antonella Palmese 2023},
Abbott et al.[2017}; Soares-Santos, A. Palmese, et al.[2019). In particular, the study of the spectra of
these EM counterparts can help us to understand the process behind the mass ejection mechanism
(Metzger 2019), the physical conditions during the merger and its aftermath. Kilonovae are powered
by the radioactive decay of rare heavy elements produced in the merger, and are primarily observed
in the ultraviolet, optical and infrared, reaching peak brightness two to three days after the merger (Li
and Paczyn ski|1998).

Kilonovae are rare events, with only a few having been observed so far, primarily as counterparts to
short gamma-ray bursts at redshifts z > 0.1 where they are difficult to observe at optical wavelengths
(Rastinejad et al.[2022). Therefore, investigating the parameter space of kilonova and their effects on
their observable properties is done with simulations, which provide detailed models of ejected matter
during mergers (Dietrich and Ujevic |2017; Lukos iute et al. 2022; Kasen et al. 2017). However,
these simulations involve detailed particle physics, general relativity, hydrodynamics, and radiative
transfer and are therefore computationally complex, taking several hours to produce observables for
one parameter set (Bulla|2019; Lukos iute et al.|[2022)).

Obtaining information about a kilonova’s physical parameters from observational data is a complex
inverse problem, which are usually approached using sampling-based inference methods such as
Markov-chain Monte Carlo (MCMC) and nested sampling techniques (Cranmer, Brehmer, and
Louppe 2020; Montel, Alvey, and Weniger|2023). However, the models that generated the data are
complex, involving several variables, often rely on approximate likelihoods, and the time needed to
reach convergence scales poorly with the dimensionality of the explored parameter space. Likelihood-
free Inference (LFI), or Simulation-based Inference (SBI; Cranmer, Brehmer, and Louppe 2020) are a
set of algorithms that bypass the need for an explicit likelihood by training an estimator on simulated
data, "learning" to approximate the likelihood or directly estimating the posterior distribution. These
models can leverage the use of powerful density estimators such as normalizing flows.

In this work we propose to use the Neural Posterior Estimation (SNPE-C/NPE; Greenberg, Non-
nenmacher, and Macke |2019)), a method of posterior estimation, to infer the physical parameters of
simulated BNS kilonovae.

2 The Astrophysical Parameters of Kilonovae

Detailed radiative transfer simulations of kilonova spectra play an essential role in multi-messenger
astrophysics, providing basic information about the physical conditions, elemental abundances,
and velocities in kilonova ejecta. Choosing a suitable simulator for parameter inference studies is
therefore crucial. Kilonova spectra and light curves depend strongly on the nuclear yields, neutrino
flux, geometric orientations, mass, and velocity of the ejecta (Metzger|2019; Kawaguchi, Shibata,
and Tanaka [2020).

In this work, we made use of KilonovaNet, a conditional variational autoencoder (cVAE) for generat-
ing surrogate kilonova spectra on tens-of-millisecond timescales (Lukos iute et al.[2022). Given a set
of parameters, it’s also capable of generating light curves. It was developed to greatly reduce the time
required during parameter inference.

KilonovaNet was trained on three different datasets of simulated kilonova spectra from BNS or BHNS
mergers (Dietrich, Coughlin, et al. 2020; Kasen et al. 2017; Anand et al.[2020). In this work, we
focused on the simulations by Dietrich, Coughlin, et al.|2020), since they come directly from BNS
merger simulations and are more realistic than the simpler parameterization of ejecta mass, velocity,
and abundance in Kasen et al. 2017, The parameter sets consist of the mass of the dynamical ejecta
(Mej,dyn), the mass of the post-merger ejecta (Mo prm), the half-opening angle of the lanthanide-rich
tidal dynamical ejecta ¢, and the cosine of the observer viewing angle cos(0,ps)-



3 Simulations and Training

KilonovaNet takes a set of parameters [Me; ayn, Mej pm. ¢, c0s(8op5)] and a list of days after the
merger to produce a spectrum. Initial tests showed that the parameter estimates using single-day
spectra were either too broad or wrong. We therefore combined spectra from three different times
after merger (1.5, 2.5 and 3.5 days) to serve as input. It is important to mention that an ensemble of
models was trained to encompass various time intervals, specifically [1.0 4z, 2.0+, 3.0+ ], where
z ranged from 0.00 to 0.99, in increments of 0.2. This approach was adopted to address potential
variations in observation times. Our analysis will primarily center on the model trained for three
distinct post-merger time points: 1.5, 2.5, and 3.5 day, this choice will become evident in the next
section.

We generate 100, 000 triplets (300, 000 spectra in total) and cut them to wavelengths between 5000
and 8000 A. Each spectrum was interpolated to have 550 points, and the flux was normalized to zero
mean and unit variance. We use only the flux value as input, since the wavelengths for all spectra
are the same after interpolating. A Gaussian smoothing was applied to reduce the noise from the
simulator, and Gaussian noise was added corresponding to 5% of the flux, to make the simulated data
more similar to real observations.

We choose uniform priors for all the parameters in the simulations, with the minimum and maximum
corresponding to the smaller and larger value coming from the original simulated data (Dietrich
and Ujevic 2017). We use the PyTorch-based SBI library (Tejero-Cantero et al. 2020ﬂ and their
implementation of Amortized Neural posterior estimation (ANPE), with a mixture density network
(MDN) as the density estimator.

The basic idea behind an Amortized Neural posterior estimation is to first train a model (training
phase) — specifically, a density estimator — that is not focused on any particular observation. Instead,
it learns to be a versatile estimator that attempts to approximate all posteriors supported by the prior.
Once trained, the density estimator can, in the second phase (inference), quickly and continually
infer parameters of BNS kilonovae from their spectra. To train the Network, we can simulate using
prior-draw parameters to build a dataset, of kilonova parameters (6;) and their respective spectra (X ),
and minimize the Loss function over the weights. Once the density estimator has been trained on
simulated data X, it can then be applied to empirical data Xy (ATF2017gfo) to compute the posterior.

We implemented an embedding network in our model, composed of three convolutional layers
followed by a max pooling layer, two Long Short-Term memory (LSTM) layers and a dense layer
with 100 neurons. The use of Convolutional layers and LSTM layers are essential to extract specific
patterns or trends in the spectral data, which can be indicative of certain physical properties, such as
the lanthanide composition of the ejecta and the viewing angle (Metzger|2019). We use the ADAM
optimizer with a learning rate of 0.0001 to perform the parameter updates during training.

4 Results

We validated the model’s training by applying it to a new set of synthetic data. We obtain coefficient
of correlation for the parameters Mc; qyn, Mej pm, @, c0s(Bops) of 0.968, 0.974, 0.991, and 0.815,
respectively. Additionally, we made use of a well known metrics in SBI to access the quality of
our posterior: Simulation-based calibration (SBC), it provides a qualitative view and a quantitative
measure to check, whether the uncertainties of the posterior are balanced, i.e., neither over-confident
nor under-confident. And it can be summarized by the Classifier 2-Sample Tests (C2ST; Lueckmann
et al. [2021) score, we obtain the C2ST score for the parameters M qyn. Mej pm» ¢, c0S(6ops) Of
0.4946, 0.5034, 0.5072 and 0.5018, respectively. These scores demonstrate that our model is reliable
and capable of inferring the physical parameters of kilonova on simulated data.

Ours main goals are to demonstrate that SBI is suited for kilonova parameter retrieval and to apply
this model to real spectra of kilonova; so far, only one was identified as an optical counterpart to
a GW event: GW170817 and AT 2017gfo (Soares-Santos, Holz, et al.[2017). We use spectral data
collated in Shappee et al. 2017, taken at 1.477, 2.476 and 3.479 days after the merger, passing a
uniform filter of size 10 spaxels (corresponding to a step of 54.45 A) in order to be visually similar to
the simulated data. Fig.[Ib]displays the parameter posteriors and the best-fit values obtained by our

"https://www.mackelab.org/sbi/
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(a) Spectroscopic time series of AT2017gfo, the spectra
generated by KilonovaNet using the Best fit of our NPE
model and the Kasen model best fit made by Shappee
et al. 2017 the vertical axis is observed flux (f»).

and 90% interval are shown in vertical solid and dashed
lines, respectively, and reported above each column.
Results from Dietrich, Coughlin, et al. [2020] (blue)
and Lukos iute et al.[2022] (orange) are also shown for
comparison.

Figure 1: Results of the performance of our ANPE model on the AT 2017gfo (counterpart to the event
GW170817) with the data collated in Shappee et al.
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Figure 2: Light curves for AT 2017gfo. Observed values (points) and the prediction based inferred
parameters using the NPE model (solid lines). The shaded bands represent the 90% confidence
interval of light curves constructed from the posterior samples. The dashed lines represent the 1 mag
tolerance typically used to represent modelling error of kilonova light curves (Lukos iute et al.



model, compared to the values obtained by Dietrich, Coughlin, et al. 2020 (blue) and Lukos iute et al.
2022|(orange). The marginal distributions show the most probable value as a solid line, and the 90%
interval as dashed lines. Some of the intervals are beyond the plot range, and are omitted for the sake
of clarity. While the results are consistent, with our median values lying inside their 90% confidence
interval, the data and method of obtaining the parameters are different. Dietrich, Coughlin, et al.|2020
uses light curve data, and incorporates priors coming from GW and pulsar observations; Lukos iute
et al.[2022| used the same dataset, and a dynamic nested-sampling algorithm to obtain the best-fit
parameters in a likelihood-based approach. Here, we combined spectral data for three different times
after the merger, and used a trained ANPE model on them to obtain the parameter posteriors.

Fig.[Ta]displays a comparison of spectral data reconstructed using KilonovaNet surrogate model with
our best parameters, the real spectra, and the fitted spectra from Shappee et al.|2017, for five different
times after the merger. Our model reconstructs the spectra from AT 2017gfo for all times after 0.5
days post-merger following the with reasonable accuracy. The worst results are for 0.5 and 4.5 days
after merger, times that the model was not trained on. At 0.5 days, however, the error reported for the
spectra generated by Kilonovanet is large, and could be at least partly responsible for the difference
between the predicted and the observed spectra.

Fig. 2] shows the light curves derived from the fits, for different bands. Solid lines represent the
inferred light curve using the best-fit parameters, and the shaded region the reconstructed light curves
using the 90% confidence interval from the inferred parameter distributions. Our model is able to
accurately predict light curves for all filters up to 14 days after the merger, considering a tolerance of
one magnitude.

5 Conclusion

Astrophysicists have a suite of simulators at their disposal that can model observables from kilonovae.
Driven by the upcoming Large Synoptic Survey of Space and Time (LSST) (Ivezi€ et al. [2019)),
the number of events will increase, and the need for a fast and reliable inference method based
on simulation will grow, as the complexity of these simulators leads to an increasing number of
parameters to be inferred and high dimensionality of parameter spaces. In this work, we tested a
simulation-based (or likelihood-free) inference method - an amortized neural posterior estimator - that
allows us to infer the parameters’ posterior within seconds and bypasses the conventional likelihood.

SBI is particularly useful when the likelihood function is intractable or computationally expensive to
evaluate. Given the speed with which the ANPE model performs during parameter inference, it will
serve as a useful tool in future gravitational wave observing runs to quickly analyze potential kilonova
candidates. The speed-up provided in the parameter inference and spectra retrieval also enables the
exploration of several different simulation models over limited observations in a reasonable time.

Another important driver of these algorithms is the rapidly increasing capabilities of machine learning,
which enable us to analyze high-dimensional data efficiently and automatically extract features from
the data, allowing for faster inference. We demonstrate the capacity of our model to reproduce
observables, spectra, and light curves of the synthetic data and the AT 2017gfo event, exhibiting the
capability and reliability of using an SBI approach to constrain the parameters of kilonova models.

In summary, our exploration into the merger of machine learning and physics, specifically applied
to kilonova events, has yielded promising results. The accuracy of our Posterior estimator model,
when applied to synthetic and real data, represents a significant stride forward in the study of these
explosive phenomena.
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