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Abstract

The high computational cost associated with solving for detailed chemistry poses
a significant challenge for predictive computational fluid dynamics (CFD) simu-
lations of turbulent reacting flows. These models often require solving a system
of coupled stiff ordinary differential equations (ODEs). While deep learning tech-
niques have been experimented with to develop faster surrogate models, they often
fail to integrate reliably with CFD solvers. This instability arises because deep learn-
ing methods optimize for training error without ensuring compatibility with ODE
solvers, leading to accumulation of errors over time. Recently, NeuralODE-based
techniques have offered a promising solution by effectively modeling chemical
kinetics. In this study, we extend the NeuralODE framework for stiff chemical
kinetics by incorporating mass conservation constraints directly into the loss func-
tion during training. This ensures that the total mass and the elemental mass are
conserved, a critical requirement for reliable downstream integration with CFD
solvers. Our results demonstrate that this enhancement not only improves the
physical consistency with respect to mass conservation criteria but also ensures
better robustness and makes the training process more computationally efficient.

1 Introduction

Computational fluid dynamics (CFD) modeling of turbulent combustion remains computationally
demanding, which is attributed to the complex interaction of multiple physical phenomena, such
as flow turbulence, heat transfer and chemical kinetics, spanning a range of spatio-temporal scales.
Of these, modeling of detailed chemical kinetics presents the principal bottleneck. The associated
kinetics is governed by an extremely stiff system of coupled ordinary differential equations (ODEs)
for multiple reactive species whose dimensionality increases exponentially as reaction mechanisms
get larger (in terms of number of species and chemical reactions). In order to make the computations
tractable, mechanism reduction is typically performed, either through the elimination of certain
reactions and species [1, 2, 3] or through analysis of the impact of timescales on the global reactions
[4, 5, 6]. However, the reduced mechanisms often lead to less reliable description of chemical
kinetics.

Recently, several Machine Learning (ML) approaches have been employed to emulate chemical
kinetics and accelerate the associated chemistry integration. Some of these approaches reduce
the dimensionality of the system through various dimensionality reduction techniques [7, 8] and
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temporally evolve the kinetics in the reduced space [9]. Other approaches have trained neural networks
aiming to predict chemical source terms as functions of the thermochemical state[10, 11, 12, 13, 14].
However, despite the potential benefits of these techniques, there are challenges. When coupled
with a numerical solver, predicted solutions may diverge or become unstable. The nonlinearity of
combustion process means even minor predictive errors can escalate into significant discrepancies in
temporal evolution of thermochemical scalars over long-time horizon.

More recently, in an effort to alleviate these challenges, a first-of-its-kind deep learning framework
based on neural ordinary differential equations (NeuralODEs) [15] known as ChemNODE [16],
has been developed at Argonne National Laboratory for robust modeling of stiff chemical kinetics
[16]. The approach obtains the solution vector through a stiff ODE solver operating on an ODE
system parameterized by a neural network that outputs the chemical source terms. The neuralODE
framework ensures that the obtained solution vectors, even after a long-time horizon, remain adherent
to the ground-truth solution trajectory.

In the present work, ChemNODE [16] is enhanced by incorporating mass conservation constraints in
the form of elemental mass conservation into the loss function during training, similar to PINNs [17].
It is shown that these modifications to the original approach not only improve the consistency of the
resulting system to the physical laws but also make the training process computationally efficient and
predictions from the neural network more robust.

2 NeuralODE Framework for Stiff Chemical Kinetics

For an unsteady chemically reacting system (with no diffusive and advective transport), the temporal
evolution of reactive scalars (species) can be defined by:

dYk

dt
=

ω̇k

ρ
, k = 1, 2, 3, ..., Ns (1)

where Yk is the mass fraction of species k, ω̇k is the corresponding chemical source term computed
using law of mass action [18], ρ is the density, Ns is the number of chemical species. The temporal
evolution of temperature is also governed by an ODE similar to Eq. 1. To calculate these source
terms, one needs to account for several elementary reactions involving production and consumption
of multiple species. As the chemical mechanism becomes larger, the number of intermediate reactions
also increases when detailed kinetics is taken into account [19]. This leads to extreme computational
costs, since all chemical time scales must be fully resolved. In the ChemNODE framework [16],
the expensive physics-based computation of chemical source terms is replaced by a neural network,
which can be described as:

dΦ

dt
= f(Φ, t;Θ) (2)

where Φ is the vector of thermochemical state (temperature and species mass-fractions, Φ =
[T, Y1, Y2, ...., YN ]), and f(Φ, t;Θ) is a neural network parameterized by weights Θ. The problem
is posed as an optimization problem of determining the optimal parameters that minimize the mean-
squared error (MSE) loss function:

LMSE =
1

N

N∑
i=1

(Φi − Φ̂i)
2 (3)

where Φ is the ground truth thermochemical state obtained by integrating Eq. 1, and Φ̂ is the
predicted state at different time instants during the neuralODE integration (Eq. 2).

2.1 Physics-constrained NeuralODE (PC-NODE)

Recent efforts have looked at combining domain-specific constraints as a means of embedding physics
into neural network training through regularization of the loss function [17]. In this case, the system
is required to adhere to the law of conservation of mass to be physically consistent. To this end, the
loss function of neuralODE training is modified to include mass conservation in the form of elemental
mass conservation constraints, as follows:

LPC−NODE = LMSE +

Nele−1∑
j=1

λjLele−j (4)
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where Lele−j incorporates the loss associated with mass conservation of element j (in the chemical
system with a total of Nele elements). For a mechanism with total of Ns reactive scalars (species),
this term can be written as:

Lele−j =

N∑
i=1

1

N

(
log

(
1 +

∣∣∣∣∣
Ns∑
k=1

Nk
j Wj

Wk

(
Yk,i − Ŷk,i

)∣∣∣∣∣
))2

(5)

where Wj is the atomic mass of the element j, Nk
j is the number of atoms of element j in kth species,

Wk is the molecular weight of kth species, and N is the number of training data points. In the
formulation of the elemental mass constraints, the above logarithmic form is used because the input
scalars are transformed to log basis.

3 Experiments

In reacting CFD simulations, it is a common numerical approach to decouple the chemistry from
transport using operator splitting. The chemistry is solved independently from advective and diffusive
transport within each computational grid cell considered as a homogeneous reactor. In this work, a
canonical autoigniting homogeneous reactor of hydrogen-air combustion at constant pressure of 1
atm is considered for demonstration purposes. This configuration is compatible with the operator
splitting approach in 3D CFD solvers. The detailed chemical mechanism [20] consists of 9 species
(H2, O2, O,OH,H2O,H,HO2, H2O2, N2) and 19 chemical reactions.

The training data is generated using Cantera [21], which solves the coupled ODE system (Eq. 1)
using detailed chemistry. The initial conditions chosen for data generation consist of 5 equispaced
initial temperatures in Ti = [1000K, 1200K] and 6 equivalence ratios in ϕi = [0.5, 1.5] for a total of
30 initial condition pairs (Ti, ϕi). Each of these initial conditions is integrated to equillibrium, and
the solution is saved at 50 points in time. The neuralODE based chemical kinetics model is initialized
with the same initial conditions as the physics-based mechanism. A two-hidden layer feedforward
neural network with 48 neurons in each hidden layer is used as the surrogate model (f(Φ, t;Θ)),
with hyperbolic tangent (tanh) activation function.

The input to the neural network is a vector Φ containing temperature and species mass fractions
(except of nitrogen (N2) since it acts as an inert gas and does not vary with time) in the logarithmic
space [16], and the output is a vector containing chemical source terms for the input vector. The
forward pass through this system requires integrating the ODEs, for which an A-L 4th order ESDIRK
method from Julia’s DifferentialEquations.jl library [22] is used. To calculate the gradients for
parameter update, forward mode automatic differentiation is employed. In this study, a second order
Levenberg-Marquardt (LM) optimizer is used, wherein the weights are updated according to:

Θn+1 = Θn − (JT J + νI)−1Je (6)

where J = ∂e/∂Θ, is the Jacobian matrix, e = Φ− Φ̂ is the error vector, and ν is a damping constant.

4 Results

In this section, results from the neuralODE trained with MSE loss (Eq. 3) and the physics-constrained
loss (Eq. 4) are compared. For PC-NODE, the hydrogen(H) and oxygen(O) based elemental mass
conservation terms are considered for the hydrogen-air chemistry in Eq. 5 with λH = λO = 3.
Figure 1 compares the training loss decay (computed as MSE between ground truth and predictions)
for neuralODEs trained with mean squared error loss (MSE) and with additional elemental mass
constraints (PC-NODE). Incorporating the elemental mass conservation constraints in the loss
function reduces the error and makes training more efficient.

Figure 2 shows profiles of the temporal evolution of temperature, mass fraction of one of the reactants
(H2), and product mass fraction (H2O) inferred from PC-NODE. Overall, very good agreement
can be seen between the ground truth (solid lines) and predictions (markers) across different initial
temperatures and equivalence ratios. Further, it is seen that the PC-NODE also satisfies the overall
species mass conservation better (Figure 3a), without an explicit constraint used for it during training.
The ground truth value of sum of species mass fractions is 1, however there is marked deviation
from this for the case where only MSE loss function is used. Figure 3b compares the elemental mass
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Figure 1: Mean squared error (between the ground truth and NODE predictions) evolution during
training for the two cases trained with MSE loss function (Eq. MSELoss) and PC-NODE loss function
(Eq. 4).

(a)

(b)

Figure 2: Temporal predictions from PC-NODE model for temperature and species mass fractions
(YH2

, YH2O) at initial temperatures: a) 1000 K, and b) 1200 K, and various equivalence ratios (ϕ).
The solid lines represent the ground truth and markers represent the PC-NODE predictions.

(a) (b)

Figure 3: Comparison of a) sum of species mass fractions between MSE trained neuralODE (marker)
and the physics-constrained neuralODE (solid lines), and b) the elemental mass fraction comparison
for hydrogen and oxygen at Ti = 1000 K, between the cases trained with MSE loss function
(blue diamonds) and PC-NODE loss function (red circles). Results for different equivalence ratios
(ϕ = 0.5, 0.7, 0.9, 1.1, 1.3, 1.5) are shown in the same plot.
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fractions of hydrogen and oxygen across different initial conditions, between the cases trained with
and without the elemental mass constraints. With explicit constraints, elemental mass fraction for
both H and O (red markers) in the predicted solution are much better conserved. The case without
constraints (blue markers) displays significant deviations, which can result in non-physical solutions
when combined with CFD solvers, as they require very low errors with respect to mass conservation
laws.

Figure 4: Temperature predictions from the PC-NODE model for out-of-sample initial temperatures
of Ti = 1025K and Ti = 1250K, at various equivalence ratios (ϕ). The solid lines represent the
ground truth and markers represent the PC-NODE predictions.

Figure 5: Comparison of elemental mass fractions of hydrogen and oxygen at Ti = 1025 K, between
the cases trained with MSE loss function (blue diamonds) and PC-NODE loss function (red circles).
Results for different equivalence ratios are shown in the same plot (ϕ = 0.6, 1.0, 1.4).

To evaluate the robustness of the trained PC-NODE, tests are performed at thermochemical conditions
which are not included in the training set. The first case consists of initial conditions that are within the
bounds of those seen during training, but not included in the training set. Three different equivalence
ratios (ϕ = 0.6, 1.0, 1.4) are considered at an initial temperature of Ti = 1025K. To further evaluate
PC-NODE, predictions are made at conditions that are outside the training bounds with an initial
temperature of Ti = 1250K and six different equivalence ratios (ϕ = 0.35, 0.4, 0.45, 1.55, 1.6, 1.65).

Figure 4 shows the profiles of the temporal evolution of temperature inferred from PC-NODE for
both of these cases i.e unseen initial conditions within and outside the training range. It can be seen
that PC-NODE predictions are in excellent agreement with the ground truth data. Further, figure 5
compares the elemental mass fractions of hydrogen and oxygen at Ti = 1025K, for the cases trained
with and without the elemental mass constraints. Again, the elemental mass fractions of both H and
O (red markers) in the predicted solution are much better conserved for PC-NODE (red). The case
without constraints (blue markers), on the other hand, exhibits significant deviations.

5 Conclusion and Next Steps

In the present work, it is shown that incorporating conservation laws as physical constraints within the
neuralODE approach of learning stiff chemical kinetics improves training efficiency and satisfaction
of conservation laws. This work is in process of being scaled up to more complex kinetic mechanisms
(for combustion of methane, ammonia etc.). In addition, these trained neural ODEs will be integrated
with CFD solvers and demonstrated for multi-dimensional reacting flow simulations in future work.
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