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Abstract

We propose the use of group convolutional neural network architectures (GCNN )
equivariant to the 2D Euclidean group, F(2), for the task of galaxy morphology
classification by utilizing symmetries of the data present in galaxy images as an
inductive bias in the architecture. We conduct robustness studies by introducing
artificial perturbations via Poisson noise insertion and one-pixel adversarial attacks
to simulate the effects of limited observational capabilities. We train, validate,
and test GCNNSs equivariant to discrete subgroups of F(2) - the cyclic and dihe-
dral groups of order N - on the Galaxy10 DECals dataset and find that GCNNs
achieve higher classification accuracy and are consistently more robust than their
non-equivariant counterparts, with an architecture equivariant to the group D¢
achieving a 95.52 + 0.18% test-set accuracy. We also find that the model loses
< 6% accuracy on a 50%-noise dataset and all GCNNS are less susceptible to
one-pixel perturbations than an identically constructed CNN. Our code is publicly
available at https://github. com/snehjp2/GCNNMorphology.

1 Introduction

The study of galaxy morphology provides insight into how galaxies form and evolve over time. With
the emergence of large-scale ground and space based observatories collecting massive amounts of
data, deep learning has shown to be a promising candidate in its capabilities for powerful, efficient
pattern recognition and inference across a variety of domains. Convolutional neural networks (CNNs)
can be employed on the task of galaxy morphology classification [[1-4] and be used to produce large
galaxy morphological classification catalogues such as with the Dark Energy Survey Year 3 data [5].
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Figure 1: Examples of galaxy images and individual class abundances from the Galaxy10 DECals
dataset containing 17, 736 labeled galaxies. Further information on each galaxy class can be found at
https://github.com/henrysky/Galaxy10.
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Group convolutional neural networks (GCNNs) [6] utilize symmetries of the data as an inductive
bias in the architecture by using a higher degree of weight sharing compared to typical CNNs. [[7, 18]
further introduced "Steerable CNNs", allowing fast implementation of GCNNs equivariant to F'(2).
CNNs endowed with symmetry priors were used for galaxy morphology classification in [9,[10].

The sensitivity of CNNs to adversarial perturbations has raised concerns about their practical deploy-
ment [[11]. Quite (in)famously, the output of CNNs can be drastically altered by perturbing one pixel
in the input image [[12]], and there exists a variety of attacks invisible to human perception that can
cause misbehavior in CNNs [[13]]. This susceptibility to adversarial attacks has given rise to the study
of robustness, wherein improvements in model training [[14], data preprocessing [15]], and architecture
[16] have been studied. GCNNs robustness to geometric perturbations (e.g. rotations) were studied
in [17]. [18}[19] studied the effects of adversarial perturbations on deep learning algorithms in
astronomy and the effectiveness of domain adaptation techniques in mitigating such attacks.

In this paper, we construct GCNNs utilizing the symmetries of the 2D Euclidean group, F(2), which
contains all rotations, translations, and reflections in flat space for the task of galaxy morphology
classification, exploiting the fact that there is no canonical orientation for galaxies and inferring
their morphological properties. E'(2) encompasses both the cyclic (rotations) and dihedral groups
(rotations and reflections), C'y and Dy, as discrete subgroups. We hypothesize that the robustness to
symmetry transformations that are manifest in equivariant neural networks will result in increased
robustness against adversarial perturbations that are relevant for the astronomical community.

2 Data & Method

2.1 Galaxyl0DECals Dataset

The Galaxy10 DECals dataset [20] contains 17, 736 colored galaxy images (in g, 1, and z band) of
10 distinct, imbalanced classes and is comprised of data from the Galaxy Zoo [21] Data Release 2
and DESI Legacy Imaging Surveys [22H24] as shown in Figure[I] The galaxy labels are a result of
multiple rounds of rigorous volunteer votes and filtering. Each galaxy image is further equipped
cosmological redshift; the sample of galaxies used here are primarily low-redshift (z ~ 0.1).

We apply normalization to take image pixel values from [0, 255] to [—1, 1], and uniformly apply data
augmentation comprised of random rotations, translations, and center-crops during training to ensure
non-equivariant models do not have an inherent disadvantage in experiments compared to equivariant
ones [8]. Internal experiments tested the effectiveness of morphological opening as used in [3]] and
the inclusion of spectroscopic redshift, but found no benefit. We create a 20% test dataset of 3, 542
samples to evaluate the performance of our models, in which images are randomly rotated by an
angle 6 € (0, 27]. We further conduct robustness studies by creating datasets with insertion of 25%,
50%, and 75% Poisson noise — as it closely resembles noise from CCD readouts or the atmosphere
[19] — normalized with respect to the total original signal of the image. One-pixel attacks which
simulate telescope processing errors were conducted using a differentiable genetic algorithm [[12], in
which a starting population of 400 agents is evolved over 200 generations to find pixel perturbations
such that an image is misclassified by the model. One-pixel perturbations are a worst case scenario
as a result of hardware failure at a detector level in an observational pipeline. These perturbations
serve to test the out-of-distribution classification capabilities of our models in scenarios relevant to
the astronomical community.
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Figure 2: Model performance on test-set and noise experiments. C'x results are in red, Dy results in
blue, and CNN baseline in black dashed-line. We see that equivariant models performance generally
increases with NV and continually outperforms the CNN baseline.

2.2 Architectures

We utilize the software package escnn [25} [26]) to incorporate equivariance to all isometries of F(2)
[8]] in constructing GCNNs equivariant to groups: C', D1 Cy, Dy, Cy, Dy, Cy, Dg, Cig, and
D1 as described at the end of § |1} Orders N higher than 16 were not studied due to being too
computationally intensive. These networks construct specialized filters that are themselves equivariant
to the desired symmetries, and therefore learn transformation-invariant features that preserve the
underlying symmetries in the data throughout training. In this way, we ensure generalization over
such transformations and their persistence in the presence of perturbations.

We construct deep GCNNs with 11 convolutional blocks containing a group-convolutional layer,
batch-normalization, and ReLU activation [27]. Five intermittent pooling layers are used, which use
point-wise average pooling for anti-aliased downsampling of feature maps. All features transform
under the regular representation of the group, p,.q, With the hidden feature fields, i, including
an expansion factor f; € {12,24,48,48,48,48,96,96,96,112,192} to increase the number of
convolutional channels. GroupPooling is used at the end to aggregate data across symmetry
channels. The network lastly contains three fully-connected layers with ELU activation [28] for
classification. Internal experiments were conducted to find optimal network depth. The effectiveness
of dropout [29] and residual connections [30] was also studied, and no substantial improvement
in results was found. The CNN baseline with an identical architecture (with the exception of
no GroupPooling) is constructed in PyTorch [31] utilizing the non-equivariant counterparts of
components mentioned previously. Models that are equivariant to SO(2) and O(2) were constructed;
however, GCNNs that are equivariant to continuous groups cannot transform under p,.4 and also
require specific non-linearities [32]]. This prevents the creation of an identical CNN baseline for
comparison to these models. As such, their performance is not presented here.

3 Results

We trained all models using cross entropy loss, AdamW optimizer [33], and a step learning rate
scheduler (10% decay at 25-epoch intervals for a starting 1r = 0.01) for 100 epochs of training with
early stopping on 4x NVIDIA A100-80GB GPUs. CNN training took O(2 hours), while GCNN
training took anywhere from O(2 hours) to O(5 hours) for higher-order GCNNs. Despite having less
parameters, the training of GCNNSs is more costly than CNNs due to the added expense of group
convolution. GCNNs are believed to converge much more rapidly than CNNs [8]], however this was
not observed in our training. Classification uncertainties were obtained using bootstrap resampling.

3.1 Noise Experiments

On the original dataset, we find that all GCNNs outperform the CNN baseline, and the performance of
GCNN:s increases with the group order and inclusion of reflection symmetry. The D¢ model achieves
a95.22+0.18% accuracy, compared to the CNN with 84.84+0.14% accuracy and outperforming the
DenseNet in [3] by 6%. On the 25% and 50% noise datasets, the D15 model achieves a 95.00+0.18%
and 89.67 £ 0.16% accuracy, compared to 81.93 4 0.13% and 66.43 & 0.13% for the CNN baseline.

*We use the convention Dy (as opposed to the more common Dz ) for the dihedral group, following [8].
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Figure 3: F1-score heatmaps for all models. We see that all models struggled to properly classify
disturbed galaxies. It can be seen that in the presence of severe noise, the CNN struggles to properly
classify all classes, while the best-performing D, model significantly struggles in three classes.

It is interesting to note that C only contains the identity element, e, and is therefore a trivial GCNN.
Despite this, it still outperforms the CNN baseline in the original and 25% noise dataset which
suggests the equivariance constraint, however minimal, is still providing some benefit over traditional
convolution.

On the 75% noise dataset, we do not find strict performance benefits with increasing group order
and symmetry. This can potentially be attributed to higher order GCNNs being more susceptible
to symmetry breaking from the added perturbations; and as such the equivariance constraint of the
model overpowers the expressivity as studied in [34436]). The highest performing GCNN is the Dy
with 65.47 + 0.28% accuracy, substantially outperforming the CNN baseline with 16.12 + 0.17%.

As shown in Figure 3] disturbed galaxies were the most difficult to classify for all models, likely due
to their high variability in morphology and lack of persistent structure. There was also confusion
between unbarred tight and loose spiral galaxies, which are also easy to confuse upon human
evaluation. The similarity of the weighted and macro average F1-scores indicates that the class
imbalance of the dataset did not have a significant effect. Figure [3]also illuminates that the success
of the D4 model in the 75% noise dataset was in its ability to classify unbarred and in-between
round-smooth galaxies, which other GCNNs struggled to classify.

3.2 One-Pixel Attacks

We perform one-pixel adversarial attack experiments to simulate the effects of data processing noise
sustained by image compression or telescope errors following the work of [19]. We apply the
differentiable genetic algorithm to each image in the test set of 3, 542 images for each model to see if
a misclassifications can be made within 200 evolutions of the population as discussed in § 2] The
experiment was not able to be run on the D1 model due to inadequate computational resources.

Model CNN Cl CQ 04 Cg 016 D1 D2 D4 Dg D16

Incorrect (%) | 3.60 | 3.60 | 1.90 | 1.90 | 2.35 | 3.15 | 2.20 | 1.75 | 2.05 | 2.31 | N/A

The amount of images susceptible to one-pixel attacks from the genetic algorithm is less for GCNNss,
however the previous expectation that GCNNs with higher order symmetries are more robust does
not apply here as shown in the table. The lowest susceptibility was 1.75% of test-set images for the
Dy model. Susceptibility to one-pixel attacks is empirically ubiquitous, and their manifestations in
astronomical settings are completely random. The results here communicate that within a reasonable
search-space for a stochastic algorithm, one-pixel perturbations that can misclassify GCNNs are
more sparse and more difficult to find, which suggest their increased robustness in a deployed setting.

4 Discussion & Future Work

We briefly analyze the models’ learned latent space using t-SNE [37]]. As shown in Figure 4] (left), for
one-pixel experiments, the expectation that increased robustness implies that images travel farther in
latent space in order to cross a decision boundary (as seen in [19]) is not observed, as the Dy model
exhibits a mean traversed (Euclidean) distance less than the CNN. However, the mean distance for
C16 - which is also more robust than the CNN - is twice as high as the CNN. It’s also seen in Figure 4]
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Figure 4: (Left) Mean Euclidean distance traversed in latent space for misclassified images in one-
pixel experiments. (Middle / Right) t-SNE space constructions for CNN and D1 models for original
(circle marker) and 50% noise (X marker) datasets. Latent space representations are the outputs of
the model before the final fully connected layers.

(middle, right) that the D¢ can better cluster galaxy classes in the 50% noise dataset and can therefore
discern their properties better, but there is still significant movement and cluster-overlap in the latent
space for some classes, which can explain the drop in accuracy seen in Figure 2] The significance of
these effects increase with the amount of noise added, and can be mitigated in networks trained with
domain adaptation [19]. The CNN movement in latent space is overall less, however the decision
boundaries are significantly more ill-defined which can explain the model’s lack of robustness. In the
future, it would be beneficial to conduct a more extensive analysis on the learned representations of
GCNNs s to interpret their increased robustness on this task.

Our work suggests that GCNN's are more robust than typical CNNs against adversarial perturbations
that are common in astronomical imaging pipelines. Our models are able to perform with minimal data
preprocessing to correct the class imbalance in our datasets or enhance the central galactic structure.
In the future, the inclusion of domain adaptation in training and spectroscopic redshift as a feature
may improve robustness. It would also be interesting to study robustness with respect to high redshift
galaxies and dim low-redshift galaxies which are noisier and fainter than the sample of galaxies used
here. The application of equivariant models has the potential to enhance the classification of over 20
billion galaxies from the Legacy Survey of Space and Time (LSST) at the Vera Rubin Observatory
[38], deepening insights into their formation and evolution.

5 Broader Impacts

The techniques presented here have the potential to classify and extract features from images of
arbitrary orientation and of significantly degraded quality, and as such warrant ethical concerns for
maladaptations of this work. The exploitation of computer vision technologies for uses of surveillance
is a poison. The authors steadfastly abhor the use of deep learning for purposes that do not seek to
further scientific knowledge or provide a beneficial and equitable service to society.
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7 Appendix

Layers Properties Stride Padding Output Shape
Input 3x255x255
Conv2D Filters: 12
(w/ BatchNorm2D) Kernel: 3x3 2 2 (12, 129, 129)
Activation: ReLU
Conv2D Filters: 24
(w/ BatchNorm2D) Kernel: 3x3 1 1 (24, 129, 129)
Activation: ReLU
MaxPool2D Kernel: 2 2 0 (24, 64, 64)
Conv2D Filters: 48
(w/ BatchNorm2D) Kernel: 3x3 1 1 (48, 64, 64)
Activation: ReLU
Conv2D Filters: 48
(w/ BatchNorm2D) Kernel: 3x3 1 1 (48, 64, 64)
Activation: ReLU
MaxPool2D Kernel: 2 2 0 (48, 32, 32)
Conv2D Filters: 48
(w/ BatchNorm2D) Kernel: 3x3 1 1 (48, 32, 32)
Activation: ReLU
Conv2D Filters: 48
(w/ BatchNorm2D) Kernel: 3x3 1 1 (48, 32, 32)
Activation: ReLU
Conv2D Filters: 96
(w/ BatchNorm2D) Kernel: 3x3 1 1 (96, 32, 32)
Activation: ReLU
MaxPool2D Kernel: 2 2 0 (96, 16, 16)
Conv2D Filters: 96
(w/ BatchNorm2D) Kernel: 3x3 1 1 96, 16, 16)
Activation: ReLU
Conv2D Filters: 96
(w/ BatchNorm2D) Kernel: 3x3 1 1 96, 16, 16)
Activation: ReLU
MaxPool2D Kernel: 2 2 0 (96, 8, 8)
Conv2D Filters: 112
(w/ BatchNorm2D) Kernel: 3x3 1 1 (112, 8, 8)
Activation: ReLU
Conv2D Filters: 192
(w/ BatchNorm2D) Kernel: 3x3 1 1 (192, 8, 8)
Activation: ReLU
MaxPool2D Kernel: 2 2 0 (192, 4, 4)
Linear Input Dimension: 3072
(w/ BatchNorm1D)  Output Dimension: 64 (, 64)
Activation: ELU
Linear Input Dimension: 64
(w/ BatchNorm1D)  Output Dimension: 32 (32
Activation: ELU
Linear: Input Dimension: 32
Output Dimension: 10 ( 10)

Activation: None

Table 1: Architecture of CNN baseline.




Activation: None

Layers Properties Stride Padding Output Shape
Input 3x255x255
MaskModule Margin: 1 (3 x255x255)
Sigma: 2.0
R2Conv Filters: 12
(w/ InnerBatchNorm) Kernel: 3x3 2 2 (N *12, 129, 129)
Activation: ReLU
R2Conv Filters: 24
(w/ InnerBatchNorm) Kernel: 3x3 1 1 (N *24,129, 129)
Activation: ReLU
Pointwise AvgPool Antialiased Sigma: 0.66 2 0 (N *24, 65, 65)
R2Conv Filters: 48
(w/ InnerBatchNorm) Kernel: 3x3 1 1 (N *48, 65, 65)
Activation: ReLU
R2Conv Filters: 48
(w/ InnerBatchNorm) Kernel: 3x3 1 1 (N *48, 65, 65)
Activation: ReLU
Pointwise AvgPool Antialiased Sigma: 0.66 2 0 (N *48, 33, 33)
R2Conv Filters: 48
(w/ InnerBatchNorm) Kernel: 3x3 1 1 (N *48, 33, 33)
Activation: ReLU
R2Conv Filters: 48
(w/ InnerBatchNorm) Kernel: 3x3 1 1 (N * 48, 33, 33)
Activation: ReLU
R2Conv Filters: 96
(w/ InnerBatchNorm) Kernel: 3x3 1 1 (N *96, 33, 33)
Activation: ReLU
Pointwise AvgPoolAntialiased Sigma: 0.66 2 0 (N *96, 17, 17)
R2Conv Filters: 96
(w/ InnerBatchNorm) Kernel: 3x3 1 1 (N *96, 17, 17)
Activation: ReLU
R2Conv Filters: 96
(w/ InnerBatchNorm) Kernel: 3x3 1 1 (N *96, 17, 17)
Activation: ReLU
PointwiseAvgPool Antialiased Sigma: 0.66 2 0 (N *96,9,9)
R2Conv Filters: 112
(w/ InnerBatchNorm) Kernel: 3x3 1 1 (N *112,9,9)
Activation: ReLU
R2Conv Filters: 192
(w/ InnerBatchNorm) Kernel: 3x3 1 1 (N *192,9,9)
Activation: ReLU
PointwiseAvgPoolAntialiased Sigma: 0.66 2 0 IV *192,5,5)
GroupPooling (192,5,5)
Linear Input Dimension: 4800
(w/ BatchNorm1D) Output Dimension: 64 (, 64)
Activation: ELU
Linear Input Dimension: 64
(w/ BatchNorm1D) Output Dimension: 32 (, 32)
Activation: ELU
Linear: Input Dimension: 32
Output Dimension: 10 (, 10)

Table 2: Architecture of GCNNs. In constructing GCNNs equivariant to C'y, N in the output shape
is exactly equal to the group order. For GCNNs equivariant to Dy, let N — 2N.
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