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Abstract

We present a new data-driven reduced-order modeling approach to efficiently solve
parametrized partial differential equations (PDEs) for many-query problems. This
work is inspired by the concept of implicit neural representation (INR), which
models physics signals in a continuous manner and independent of spatial/temporal
discretization. The proposed framework encodes PDE and utilizes a parametrized
neural ODE (PNODE) to learn latent dynamics characterized by multiple PDE
parameters. PNODE can be inferred by a hypernetwork to reduce the potential
difficulties in learning PNODE due to a complex multilayer perceptron (MLP). The
framework uses an INR to decode the latent dynamics and reconstruct accurate
PDE solutions. Further, a physics-informed loss is also introduced to correct the
prediction of unseen parameter instances. Incorporating the physics-informed loss
also enables the model to be fine-tuned in an unsupervised manner on unseen PDE
parameters. A numerical experiment is performed on a two-dimensional Burgers
equation with a large variation of PDE parameters. We evaluate the proposed
method at a large Reynolds number and obtain up to speedup of O(103) and ∼ 1%
relative error to the ground truth values.

1 Introduction

Numerical simulations are broadly used in almost every branch of science and engineering, such as
climate modeling, product design, risk prediction, etc. However, high-fidelity simulations remain
challenging in practice due to the high dimensionality and complicated physics patterns, especially
for many-query problems. To circumvent the computational cost in PDE simulations, a slew of
surrogate modeling techniques have been developed in many forms.

One particular approach is the projection-based reduced-order model (ROM) which has succeeded in
many applications [1–19]. Many traditional ROMs utilize proper orthogonal decomposition (POD)
based linear projection to reconstruct accurate approximations. However, due to the limitation of the
linear projections, the Kolmogorov n-width problems remain an obstacle to those linear ROMs.

In recent years, neural network based ROM approaches have been developed [20–28]. The capability
of machine learning (ML) to make universal approximations allows such ROMs to approximate
PDE states in a nonlinear manifold. ROM with neural networks utilizes encoder-decoder-type
structures in which they learn the latent dynamics in low-dimensional latent space and then decode
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the reduced states to reconstruct the PDE states. Among various ML-based approaches, implicit
neural representation (INR) type decoders are gaining traction [29–31] due to their flexibility; INRs
decode the latent states at the continuous level, meaning that it has the capability to extrapolate
arbitrary spatial/temporal positions and is independent of the resolution of the discretization.

In this work, we extend the state-of-the-art INR-based ROM, Dynamics-aware Implicit Neural
Representation (DINo) [31], to learn the surrogate models for the solutions of parameterized PDEs.
DINo compresses/decompresses high-dimensional PDE states into low-dimensional embeddings
via INR-based auto-decoding/decoding and describes the temporal evolution of embeddings via
neural ordinary differential equations (NODEs) [32]. However, NODEs are known to be restrictive
in modeling parameterized dynamics and, thus, we extend the latent dynamics of DINo to the
parameterized NODEs (PNODEs) in [33] and its hypernetwork-based alternative (HyperPNODE).
Furthermore, we introduce a fine-tuning via minimizing a physics-informed (PI) loss [34] to correct
prediction for unseen data. This "unsupervised" loss helps the decoder in producing better predictions
on out-of-distribution PDE parameters. The main contributions of this work are summarized as:

• a data-driven reduced-order modeling framework that is based on INR to generate spa-
tially/temporally continuous predictions,

• extending the non-parametric approach (DINO) to parametrized PDE with PNODE and
HyperPNODE,

• inference corrected by the physics-informed loss,
• demonstrated performance on parametrized PDE and unseen parameter instances.
• fine-tune the pre-trained model to improve the accuracy on unseen parameter instances.

2 Model order reduction

Full-order model We consider a parameterized system of semi-discrete PDE or a system of ODEs,
which we will refer to as a full order model (FOM):

∂u

∂t
= f(u, t;µ), u(0;µ) = u0(µ), (1)

where f : RNu × [0, T ]×D → RNu denotes the velocity, or the spatially discretized PDE, u(t;µ),
u : [0, T ]×D → RNu is the PDE state and implicitly defined as the solution to the system of ODEs,
µ ∈ D ⊂ RNµ denotes a collection of PDE parameters, and t is the time from 0 to the final time
T ∈ R+. Finally, the initial condition is specified by u0(µ), u0 : D → RNu in the parametrized
setting. Solving Eq. (1) can be computationally expensive due to high degrees of freedom (typically
∼ 107) in practical problems in computational physics.

Reduced-order model ROMs migrate the computational cost of FOMs via latent-state evolutions
in a low-dimensional manifold and make predictions on the FOM solutions via a decoder, a mapping
from the latent states to the full-order states,D : Rk 7→ RNu , which follows the framework of the
latent space dynamics identification (LaSDI) [25, 27, 35, 36]. For parameterizing the latent dynamics,
we largely follow the approaches considered in [31, 30], namely, employing NODEs [32]:

∂û

∂t
= f̂ψ(û, t;µ,ψ), û(0;µ) = û0(µ), (2)

where f̂ψ(·, ·; ·,ψ) : Rk × [0, T ] × D → Rk is a velocity function that defines the dynamics of
the latent states over time, acting as a surrogate model for FOMs with k ≪ Nu, and ψ consists of
neural network weights. Also, û(t;µ), û : [0, T ] × D → Rk are the reduced states, and û0(µ),
û0 : D → Rk denotes the reduced initial condition. In the ROM setting, nonlinear mapping and
latent-dynamics models are trained to generate accurate approximations to the full-order model
solution, i.e.,D(û) ≈ u. While effective in learning certain classes of PDE solutions [31, 30], these
frameworks based on NODEs naturally fail to build surrogate models for dynamical systems, where
the input PDE parameters (e.g., Reynolds number) can change the model dynamics. This is because
of NODEs’ limited expressivity (Eq. (2)), which fails to capture the model dynamics based on the
input PDE parameters. For notational simplicity, we use û to denote reduced states or latent states
for all reduced settings including NODE, PNODE, and HyperPNODE.
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Figure 1: The architecture of HyperPNODE consisting of i) a hypernetwork to generate model
parameters (i.e., diagonal elements) and ii) an RK4Net as an integrator for time interval [0, T ]

Learning latent-dynamics using PNODE To address such limitation, a parameterized alternative
of NODEs, named PNODEs [33], has extended NODEs by introducing PDE parameters µ into the
dynamics:

∂û

∂t
= f̂ϕ(û, t;µ,ϕ), û(0;µ) = û0(µ)

where f̂ϕ(·, ·; ·,ϕ) : Rk × [0, T ]×D → Rk is the parametrized velocity function. PNODEs have
been demonstrated to present multiple trajectories characterized by each PDE parameter instance.
Since fϕ is an MLP, ϕ = {Wl, bl}Ll=1 includes the network’s weights and biases for L layers.
Inferring high-dimensionalWl can be challenging in complex MLPs.

Learning latent-dynamics using HyperPNODE To overcome the potential high complexity in
MLP, we propose a low-rank factored representation of model weights and use hypernetwork to
infer some parts of the model parameters. In this low-rank setting, the network module i) takes
the initial latent state û0, a time interval t, and PDE parameter µ as inputs, ii) mimics the singular
value decomposition (SVD), i.e., a linear combination of low-rank matrices and decomposes the
weights of the MLPW l(µ) = Σr

i=1si
l(µ)ul

iv
l
i
T, where si(µ) comes from the hypernetwork, and

iii) predicts a sequence of latent states û(T ;µ) for the selected time interval. Note that ui in the
SVD-like decomposition differs from the PDE states in Eq. (1).

Next, we discuss the detailed architecture of the hypernetwork setting. We denote this approach as a
hypernetwork-based PNODE (HyperPNODE):

∂û

∂t
= f̂θ(û, t;µ,θ), û(0;µ) = û0(µ)

where f̂θ(·, ·; ·,θ) : Rk × [0, T ] × D → Rk is the parametrized velocity function inferred by a
hypernetwork θ := θπ(µµµ) which only depends on the PDE parameter µ and is learned via training.
The hypernetwork θ infers only the diagonal entries {sl(µ)}L−1

l=2 = θ. Then, for a selected time
interval [0, T ], the predicted sequence of latent states can be represented as

û(T ;µ) = û0(µ) +

∫ T

0

f̂θ(û, t;µ,θ)dt = σ(f̂θ(û, t;µ,θ)),

where σ is an ODE solver. Unlike the black box integrator used in NODE and PNODE, in the
proposed work, we employ the RK4Net in [37] to integrate the latent dynamics. Finally, the internal
layers of HyperPNODE can be described as:

h1 = σ
(
W 0h0 + b0

)
,

hl = σ
(
U l−1diag(sl−1(µ))V (l−1)Thl−1 + bl−1

)
, l = 2, . . . , L− 1,

û(T ;µ) = σ
(
WLhL + bL

)
,

where U ∈ Rn×r and V ∈ Rn×r are orthogonal matrices, and both have a size of n features by
r user-defined rank. By choosing a low rank r < k, f̂θ is relatively efficient to learn. Figure. 1
summarizes the overall architecture of the HyperPNODE.
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Decoder via INR We decode the latent states using the FourierNet [38], following [31]. It
outperforms the other INR architectures in cases without prior knowledge of the PDE and generalizing
multiple trajectories. In this setting, the decoderDθdec

parametrized by θdec is defined as:

ũ =Dθdec
(û;x,θdec),

where ũ ∈ RNu are the approximated high-dimensional states for the time interval t. The FourierNet
predicts the PDE states at all nodal positions in Ω and depends on the latent states û.

Training In this work, we use an auto-decoder in [39] to encode the high-dimensional states into
latent space. After the networks are defined, the forward pass of the proposed framework can be
summarized as:

1. encode the reduced initial state from given initial condition: û0(µ) = Eθenc
(u0(µ);θenc)

2. learn the latent states û using PNODE or HyperPNODE
3. decode the collected latent states and use INR to reconstruct high-dimensional states.
4. compute the loss function that consists of data-matching loss and physics-informed loss

(PDE residual loss, initial condition loss, and boundary condition loss) [34]

L = α1 MSE(u, ũ)︸ ︷︷ ︸
data-matching

+α2 MSE(r(ũ),0)︸ ︷︷ ︸
PDE residual

+α3 MSE(ũ0,u0)︸ ︷︷ ︸
initial condition

+α4 MSE(ũ∂Ω,u∂Ω)︸ ︷︷ ︸
boundary condition

where r is the residual of the governing equation and αi are user-defined scaling number.

For the training loss, the main loss is the data-matching loss and PDE residual loss can be used as
an option. When the PDE residual loss is opted in for training, the methods are denoted by using a
name with a suffix, “+PI”. Also, when HyperPNODE is chosen, an additional orthogonality penalty
is minimized: ρ1∥UTU − I∥+ ρ2∥V TV − I∥, where ρi are the penalty weights.

Fine-tuning INR As in many other ROM approaches, the proposed method shares the same
limitation, performance degradation for unseen PDE parameters (i.e., out-of-distribution samples).
To alleviate this limitation, we fine-tune the trained model on a target test PDE parameter in an
unsupervised manner by minimizing only the PDE residual loss and selected part of latent dynamics.
To this end, we fine-tune the INR with the loss:

Lft = β1MSE(r(ũ),0) + β2MSE(ũ0,u0) + β3MSE(ũ∂Ω,u∂Ω),

where βi are penalty weights for PDE residuals, initial condition, and boundary conditions, respec-
tively. Additionally, we fine-tune the hypernetwork since it has a manageable number of parameters.

3 Numerical Results and Discussion

In this section, we apply the proposed INR-ROM method to solve a parametrized computational
physics problem adapted from [25]. We demonstrate the effectiveness of the proposed parametric
method by comparing the performance with using NODE.

2D Burgers The problem we consider is solving a two-dimensional, parametrized Burgers’ equa-
tion:

∂v

∂t
= −v · ∇v +

1

µ
∆v, Ω = [−3, 3]× [−3, 3], t ∈ [0, 1],

with the boundary condition v(x, t;µ) = 0 on ∂Ω, an initial condition v(x, 0;µ) = 0.8e−
∥x∥2
1.02

and µ is the Reynolds number used as the PDE parameter. The computational domain has a
uniform spatial discretization with 64× 64 grid. The full-order model utilizes the implicit backward
Euler time integrator with a uniform time step of ∆t = 1/1000. In this problem, the training
set µtrain = {30, 50, 100, 500, 1000, 2000, 5000, 10000, 30000, 50000}, the testing set µtest =
{20, 300, 20000, 60000} are chosen to ensure a large variance on µ, which is challenging for the
physics-informed neural networks. For each model, we set the dimension of the latent states to be 50
for each solution component (two components w and z in 2D Burgers equation), and ODE MLPs
(NODE, PNODE, and RK4Net) to have 3 layers with 256 units per layer. In HyperPNODE, the
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hypernetwork has only 1 layer with 50 units, and the rank r = 50 is chosen empirically for reasonable
training accuracy. Finally, the learning rate of the INR is 0.01 and 0.001 for all other optimizers. We
also note that all results shown in this section are the first component w.

We first investigate the performance of different approaches including NODE, PNODE, and Hyper-
PNODE as well as their PI variants on the training set. Table. A1 lists the number of parameters and
point-wise relative error to the ground truth values from FOM. Both hypernetworks-based approaches
outperform other methods with fewer trainable parameters. Figure. A1 compares the point-wise
difference of the PDE states from selected models on the training point Re = 500. In this parametric
setting, NODE fails all cases to predict the ground truth because it minimizes an MSE loss without
recording parameter footprints so that it overfits an averaged µ during the training. Hence, we only
discuss the accuracy of PNODE and HyperPNODE in the rest of this discussion. After adding
physics-informed loss as shown in A2, we observe a slightly larger error for each model. However,
we observe that a noisy region is pushed towards the location near discontinuity. This indicates a
potential improvement in the physics-informed variants. We cut off the training at 50000 epochs, but
a model with PI loss may require further training for better results.

Next, we test the pre-trained model on the test dataset that includes interpolated and extrapolated test
values. Table. A2 shows similar results in the training results that adding PI loss can slightly enlarge
the error. Meanwhile, the HyperPNODE models have large test errors in low Re cases. Figures A3
and A4 show similar behaviors as in the training results. Adding PI loss increases the maximum error,
but it also pushes the error to a reasonable region.

Finally, we fine-tune the model at the test data point, Re = 20, which introduces the largest relative
error. Figure. 2 shows the fine-tuned accuracy by HyperPNODE. The relative test error at Re = 20 is
reduced from 1.234e-01 to 1.005e-01, which is smaller than the result of HyperPNODE without PI
loss. In this case, any model without incorporating physics information in the training stage fails this
fine-tuning step since it does not record any physics information.

Figure 2: Comparison of point-wise ∥uts − ûts∥ at T = 1 for selected Re = 20 in the testing set. From left
to right: reference full order model (FOM) solution, point-wise error between HyperPNODE and FOM, and
point-wise error between fine-tuned HyperPNODE and FOM.

Discussion In this work, we propose a new data-driven reduced-order model inspired by DINo
for parametric configurations by using parametrized Neural ODEs (PNODE and HyperPNODE).
Both PNODE and HyperPNODE successfully reconstruct the FOM solutions and provide reasonable
solutions on unseen PDE parameters. With all variances of the proposed framework, we obtain ∼ 1%
averaged relative error on the training set, and ∼ 4% averaged error on the test set. Different models
with their PINN variants have a similar range of speedups from O(102) to O(103). We also employ
an unsupervised fine-tuning method to improve the worst scenario of the HyperPNODE+PI loss
model by reducing ∼ 2% of the error.

Future direction There are potential improvements to the current PINN variants, including tailoring
the FouriNet for spatial-temporal inputs, additional training stage, and reducing the overfitting issue
in HyerPNODE models.

5



4 Broader impact

This paper introduces a new data-driven parametrized reduced-order-modeling technique using INR
as a decoder to reconstruct data at a continuous level. The proposed INR-ROM framework is expected
to have broad impacts on the computational science community and application potentials in a wide
range of engineering and scientific domains. There is no negative consequence on ethics and society
in this work.
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Appendix: Additional Figures and Tables

Table A1: Comparison of the number of trainable parameters and the training accuracy

Model # Parameters Avg. ∥utr−ûtr∥
∥utr∥ Max. ∥utr−ûtr∥

∥utr∥

NODE 209128 1.798e-01 4.802e-01
NODE+PI 209128 1.798e-01 4.801e-01
PNODE 209641 1.094e-02 1.459e-02
PNODE+PI 209641 1.430e-02 1.931e-02
HyerPNODE 165509 8.336e-03 1.068e-02
HyerPNODE+PI 165509 1.140e-02 1.421e-02

Table A2: Comparison of the test accuracy and speedups

Model Avg. ∥uts−ûts∥
∥uts∥ Max. ∥uts−ûts∥

∥uts∥ Min. Speedup Max. Speedup

NODE 2.653e-01 6.821e-01 1.133e+02 1.320e+03
NODE+PI 2.654e-01 6.819e-01 1.142e+02 1.364e+03
PNODE 3.212e-02 7.487e-02 1.164e+02 1.292e+03
PNODE+PI 4.861e-02 1.099e-01 1.151e+02 1.280e+03
HyerPNODE 4.537e-02 1.238e-01 1.173e+02 1.832e+03
HyerPNODE+PI 4.618e-02 1.234e-01 1.167e+02 1.811e+03
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Figure A1: From left to right: FOM reference solution and the comparison of point-wise ∥utr − ûtr∥ at T = 1
and selected Re = 500 in the training set for NODE, PNODE, and HyperPNODE, respectively.

Figure A2: From left to right: FOM reference solution and the comparison of point-wise ∥utr − ûtr∥ at T = 1
and selected Re = 500 in the training set for NODE+PI, PNODE+PI, and HyperPNODE+PI, respectively.

Figure A3: From left to right: FOM reference solution and the comparison of point-wise ∥uts − ûts∥ at T = 1
and selected Re = 60000 in the training set for NODE, PNODE, and HyperPNODE, respectively.

Figure A4: From left to right: FOM reference solution and the comparison of point-wise ∥uts − ûts∥ at T = 1
and selected Re = 60000 in the training set for NODE+PI, PNODE+PI, and HyperPNODE+PI, respectively.
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