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Abstract

Many galaxies overlap visually from the vantage point of Earth; these galaxies
are known as “blends”. Undetected blends can lead to errors in the estimation of
quantities of scientific interest, such as cosmological parameters and redshift. We
propose a generative model based on a state-of-the-art simulator of galaxy spectra,
and develop a simulation-based inference method to detect unrecognized blends.
Our inference routine simulates both blended and unblended spectra with which it
trains an inference network to solve the inverse problem, that is, to map spectra
to a Bernoulli distribution indicating the presence or absence of blendedness. Our
experiments demonstrate the potential of our method to detect unrecognized blends
in high-resolution spectral data from the Dark Energy Spectroscopic Instrument
(DESI).

1 Introduction

From the viewpoint of Earth, many galaxies overlap visually. These “blends” result in measurement
contamination in astronomical data. In images, for example, a blend occurs when photons from
multiple sources contribute to a pixel, while spectral blends occur when flux from multiple objects
is registered on the same spectrograph fiber during an exposure. Blends are common due to the
density of objects in the sky: about 62% of sources detected in images of the Legacy Survey of Space
and Time (LSST) are expected to be blends [1]. Blends pose a significant difficulty to cosmology,
as measured properties of blended objects do not reflect those of any individual constituent. These
faulty measurements may propagate errors into further downstream cosmological estimation tasks
[2, 3, 4, 5].

Detection of blends is thus critical to our understanding of cosmology. However, a significant portion
of blends are undetected based on photometric data alone. Mock simulations for the LSST survey, for
example, have estimated that approximately 12% of galaxies believed to be single objects are in fact
unrecognized blends [6]. Detected blends in photometric data are often not targeted for spectroscopy
[7], but undetected blends may still be, resulting in observed spectra that are blended.

We present a simulation-based inference approach to identifying blended astronomical spectra. While
blending in spectra has been examined previously (e.g., [8]), it has not been the focus of most recent
surveys, which tackle blending primarily by use of images and other photometry. However, recent
advances in deep learning and astronomical simulation have sparked renewed interest in the potential
to apply spectral data to the tasks of blend detection and separation [9]. Our work represents a step in
this direction.

Astronomical spectra are high-dimensional, with many features potentially useful for detecting blends.
However, spectra are often noisy and, in contrast to images, contain no spatial information to indicate
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that another light source is nearby. Blends must be discerned from features present in the spectrum
alone, such as emission and absorption lines [10]. A blended spectrum may exhibit i) larger or smaller
emission or absorption lines than an unblended one, relative to overall flux magnitudes or ii) the
“same” emission line in multiple wavelength locations if objects with different redshifts are blended.

While these spectral features may be informative for blend detection, they also pose a substantial
roadblock to traditional Bayesian inference. The constituent spectra (one, two, or more) that form a
noisy observation (a non-blend or blend) are unknown latent variables that must be marginalized out
for inference. This task is computationally intractable in standard Bayesian methodologies due to the
large dimension of latent spectra. The space to marginalize over is also trans-dimensional because
the number of latent spectra is also unknown, complicating inference further. Our approach avoids
these pitfalls by implicitly marginalizing out these nuisance variables through simulation, avoiding
the need for explicit modeling of these complex latent quantities.

2 Generative Model

Detecting blends is an unsupervised task: though tens of thousands of spectra have been measured
across various surveys, authoritative labels of the presence or absence of blending are unavailable.
We thus posit a generative model of unblended and blended spectra. Our model makes use of the
Probabilistic Value-Added Bright Galaxy Survey simulator (PROVABGS) [11] to generate both
blended and unblended spectra (Section 2.1). As PROVABGS generates “noiseless” spectra, we must
incorporate a realistic noise model for the synthetic spectra to resemble those measured in reality
(Section 2.2).

2.1 Blended Spectra

The PROVABGS simulator is based on stellar population synthesis models of galaxy formation,
and uses 12 parameters θ to produce synthetic spectra. We use the prior θ ∼ p(θ) on these 12
parameters suggested by [11], along with a Uniform(0, 1) prior on redshift. Additionally, although
the true proportion π of blends in observed spectra is unknown, we set π = 0.5 and set the prior on a
blendedness indicator random variable z to be Bernoulli(π). This misspecified prior can be adjusted
for posthoc (e.g., by case-controlled sampling). In the generative model, we draw z from the prior
above, followed by θ1, θ2 and two redshifts r1, r2 independently from their respective priors. These
yield two unblended spectra s′1, s

′
2 computed from the PROVABGS model (which are subsequently

resampled onto a common wavelength grid).

Blending is performed by binwise addition of flux across all wavelengths; however, the priors
above yield spectra on several different orders of magnitude of brightness. This can result in near-
indiscernible blends. Therefore, we work with normalized and scaled spectra to construct blends that
are detectable — normalized spectra have been used in related work to disentangle flux magnitudes
from inference [12]. Denote the spectra after normalization by s1, s2, respectively. If z = 0, the
distribution of the observed data x is modeled as a point mass at s1, i.e. x ∼ δ(s1), whereas if z = 1
the observed spectrum is a blend of s1 and s2 constructed as x ∼ δ(Normalize(m · s1 + s2)), where
m ∼ Uniform(c, 1) and multiplication and addition are performed binwise across all wavelengths.

The scaling random variable m allows for blends where one source is significantly “brighter” than the
other, as commonly occurs in reality. The source s2 is permitted to be up to 1

c times brighter than s1
by this construction. We take c = 0.1 in our experiments. The final normalization step after blending
ensures that both blended and unblended spectra are on the same scale. If desired, one can rescale the
data, i.e. generate x̃ = M · x for some scalar M that multiplies the spectrum x binwise across the
wavelength grid, to produce simulated spectra on the same scale as observed spectra. Together, the
scalings M and m implicitly explore the threshold of detectability in spectral blends. The variable
m ∈ (c, 1) defines the relative brightness of the first source to the second, while M defines the
absolute brightness of the spectrum. If either is too low, a blend may be undetectable: in the former
case, because one source dominates, and in the latter because the noise model (Section 2.2) may
overpower the signal.
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Figure 1: A noiseless blended spectrum produced from the model in Section 2.1 (top) has the constant
SNR noise model applied (Section 2.2) with σ = 0.1 to obtain a more realistic spectrum (bottom).

2.2 Realistic Noise Models

We propose two noise models of different complexity. In the simpler case, we first draw samples (both
blends and non-blends) from the model of spectra above, resampled onto a common wavelength grid
of width 5 Angstrom (Å) between 3000 Å and 10000 Å. We work on the normalized scale (i.e. M = 1)
throughout. We then add a simple noise model that imposes a fixed signal-to-noise ratio (SNR),
constructed by multiplying the entire spectrum pointwise by a random variable ϵ ∼ N (1, σ2Ib) where
b = 1600 is the dimension of the spectrum. This results in a signal-to-noise ratio (SNR) that is fixed
across all wavelength bins for all observations. With µ denoting the flux at a particular wavelength
for a given noiseless spectrum and Z ∼ N (0, 1), the observed flux is modeled as

µ · (σZ + 1) ∼ N (µ, µ2σ2), (1)

which has a SNR of 1
σ . The choice of σ is a hyperparameter that we set to 0.1, which yields synthetic

spectra that are similar to real spectra from SDSS. In Figure 1, we show a (resampled) blended
spectrum both before and after applying the constant SNR noise model.

Our second noise model produces DESI-like spectra using the specsim1 DESI noise model [13].
Given a normalized spectrum from the blending model above (resampled onto the DESI wavelength
grid), we scale the signal by M and simulate the spectrograph response using Gaussian noise modeled
after the atmosphere and instrumentation noise particular to DESI. As raw DESI spectra are observed
on three spectrograph arms (blue (b), red (r), infrared (z)) [14], the simulated spectra are also observed
in these three regions (cf. Figure 2).

Scaling by M is necessary because specsim expects signals of appropriate magnitude in units
erg · cm−2s−1Å

−1
, and the normalized spectra (both blended and unblended) are on a different scale.

We experiment with a range of M values in Section 4, chosen to produce synthetic spectra of similar
brightness to real DESI spectra (see Figure 2).

3 Variational Inference

We use a recently developed approach to Bayesian inference called forward amortized variational
inference (FAVI) [16] to perform inference on the blendedness indicator random variable z. FAVI
minimizes the forward KL divergence KL

[
p(z | x)||qϕ(z | x)

]
between exact and approximate

posteriors for all possible synthetic spectra x from the generative model [16, 17]. While the forward

1https://github.com/desihub/specsim
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Figure 2: A simulated DESI-like blend with M = 105 (top), and a coadded spectrum from the DESI
early data release (bottom) [15]. Coaddition smooths noise at camera boundaries.

KL divergence is generally intractable for any given spectrum x, FAVI averages over samples x from
the generative model to enable unbiased estimation of gradients with respect to the parameters ϕ of
the encoder network qϕ. More precisely, we have

∇ϕEp(x)KL
[
p(z | x)||qϕ(z | x)

]
= ∇ϕEp(x)Ep(z|x) log

p(z|x)
qϕ(z | x)

= −Ep(z,x)∇ϕ log qϕ(z | x),

(2)
provided integration and differentiation may be interchanged. Accordingly, unbiased estimates of
this gradient can be computed with only samples z, x ∼ p(z, x). Importantly, the likelihood is not
required to be tractable or given in closed form, and so amortized inference by FAVI is a form of
likelihood-free inference or simulation-based inference [18, 19]. FAVI is also known as “sleep-phase”
training in the reweighted wake-sleep (RWS) algorithm [17, 20], and is an instance of neural posterior
estimation (NPE) [21] with fixed prior proposal.

3.1 Encoder Architecture

We utilize a novel short-term Fourier transform (STFT)-based architecture for the encoder network.
STFTs apply a Fourier transform to small, overlapping windows of the input signal, revealing features
relevant for frequency decompositions [22]. Intuitively, STFT-based features may be able to capture
features related to the frequency, number, or size of emission and absorption lines in the input spectra,
that are subsequently passed through a deep neural network for detecting blends.

Our variational distribution is parameterized as a Bernoulli on the blendedness indicator z conditional
on the observed spectrum x, i.e.

qϕ(z | x) ∼ Bernoulli(fϕ(x)),

where fϕ(x) denotes the neural network with parameters ϕ applied to the STFT features of x. In this
case, the FAVI objective (Equation 2) reduces to binary cross-entropy loss, averaged over simulated
(z, x) pairs:

−Ep(z,x) log qϕ(z | x) = −Ep(z,x)

(
1z=1 log p+ 1z=0 log 1− p

)
. (3)

where p = fϕ(x) for a given spectrum x, and 1 denotes an indicator random variable.
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Accuracy AUROC
0.9476 (0.0084) 0.9591 (0.0082)

Table 1: Results for the constant SNR noise
model, blending performed with c = 0.1.

M Accuracy AUROC
104 0.5851 (0.0390) 0.6182 (0.0315)
105 0.7846 (0.0332) 0.8322 (0.0218)
106 0.8726 (0.0161) 0.9131 (0.0115)

Table 2: Results for DESI-like spectra from
specsim, blending performed with c = 0.1 for
differing values of M .

4 Experiments

We trained the encoder network and evaluated on held-out samples from our generative model2. On
simulated test batches of spectra, we compute accuracy by performing blend prediction by choosing
the most likely class specified by qϕ(z | x), i.e. with hard assignment using prediction threshold
0.5. We also compute a second metric, the area under the receiver operating curve (AUROC), that
aggregates model prediction performance across multiple thresholds. For both metrics we report the
average over simulated test batches, with standard errors in parentheses.

The trained encoder inferred blendedness to a high degree of accuracy, as evidenced by Table 1 and
Table 2. For the constant SNR noise model, around 94% of predictions on unseen test simulations
are correct. Detecting blends in the simulated DESI data is more challenging, reflected by generally
lower degrees of accuracy on test simulations. The different values of M result in different levels of
brightness, and thus of signal-to-noise levels, in the simulated spectra with the DESI noise model. At
lower brightness, discriminating between blends and non-blends is difficult due to the noise level.
For brighter instances, however, accuracy is around 87% on unseen test simulations.

5 Discussion & Future Work

For synthetic data sampled from two generative models of astronomical spectra, we inferred a
blendedness indicator using simulation-based inference. The specific SBI methodology we use,
FAVI, implicitly marginalizes out the complex spectral latent random variables, so no variational
distributions need to be explicitly constructed for these nuisance latent variables. This is critical as the
space over these nuisance latent variables is both high-dimensional and trans-dimensional: either one
or two latent spectra need to be marginalized over in the case of a non-blend or blend, respectively.

Encoders based on STFT features performed well at this task, particularly for our simpler model
of spectra. Ultimately, though, we aim to apply our model to detect blends in DESI spectroscopic
observations. To this end, in future work we aim to further improve the quality of inference on
simulated DESI data by inferring minor blends (e.g., c < 0.1) and blends of three or more objects.
These changes can be easily incorporated into our existing generative model. We also aim to refine our
model of synthetic DESI spectra and inference procedure to the observed spectra from the first DESI
early data release [15]. In particular, we aim to generalize STFT features to wavelet transformations
to enrich the feature space of spectra for inference. Our present work provides a baseline for spectral
blend detection that future work may build upon.

2Code available at https://github.com/declanmcnamara/spectral_blends
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