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Abstract

This work presents an effective machine learning (ML) data set related to the
short-term voltage dynamics in power systems. Power systems dynamics are
highly nonlinear and intricate. Model designs/specifications in power systems
need expertise to capture dynamic phenomena. ML has become an important
tool for analyzing complex behaviors of physical systems, but ML models need
quality data sets for training and testing. Learning surrogate models to replicate
certain dynamic behaviors of power systems is a growing area of interest; however,
building required data sets can be challenging. We utilize the high performance
computing (HPC)-based grid simulator GridPACK to create voltage dynamics
of a bulk power system, namely the IEEE 300 bus test system, capturing fault-
induced delayed voltage recovery (FIDVR) phenomenon. This FIDVR is generally
mitigated by the under voltage load shedding (UVLS)-based control strategy. The
data set created here contains the trajectory data of voltage dynamics under different
control actions generated by standard UVLS strategy and random noise. We present
the structure of the data set and its application in learning a dynamic surrogate
model. Finally, other suitable ML-based applications of the given data set are
discussed, thereby helping to strengthen reusable science practices. The dataset
is open-sourced at https://github.com/pnnl/MBDRL/tree/master/
surrogate_model_data.

1 Introduction

In recent years, power and energy sector has seen steep rise of machine learning methods [Entezari
et al., 2023] in various application sub-fields ranging from load forecasting, state estimation, anomaly
detection to real-time decision making [Forootan et al., 2022, Xie et al., 2020]. The data set presented
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in this paper focuses on the dynamical side of power systems, which follows a set of differential-
algebraic equations (DAE). With system size, e.g., the number of buses/nodes, generators, and other
components, the dimension and complexity of the model increase manifold, making model-based
optimization and decision-making computationally challenging; whereas machine learning methods
have the capability of learning from data with minimal dependence on mathematical models, thereby
providing an effective solution to tackle the issues of high-dimensional models of physical systems
and associated computational challenges.

The success of machine learning methods primarily depends on good-quality data. The availability of
large data set related dynamic events from real-world power grid are constrained due to many factors,
e.g. safety-critical nature, low occurrence, limitations of experiments. Fault-induced delayed voltage
recovery (FIDVR) is a dynamic phenomena observed after fault clearance due to stalled residential
air conditioning (AC) units (powered by single-phase induction motors), and causes delayed voltage
recovery, which may lead to widespread cascading blackouts Eto [2015]. This short-term voltage
instability can be mitigated by controlled shedding of loads achieved through under voltage load
shedding (UVLS) relays Lu et al. [2009]. UVLS is rule-based method and may fail to adapt with the
operational changes. To improve the solution aspects, voltage recovery dynamics with control actions
needs to be studied. But due to scarcity of the real-world data, the use of physics-based simulators
is a common practice in the power systems research community. In general, FIDVR simulation for
the IEEE 300 bus-systems needs modeling expertise. Even with GridPACK, a HPC-based simulator
Palmer et al. [2014], FIDVR simulation can take several seconds, and is not compatible with real-time
fast decision-making. A data-trained surrogate model replicating the voltage recovery dynamics can
break this barrier, as the inference time of machine learning models is usually much less compared
to physics-based simulation. In this paper, we simulate the FIDVR phenomenon with bulk IEEE
300-bus systems, under standard UVLS control blended with random noise. The simulated voltage
trajectory data is then converted to data tuple considering multi-step transition data format (discussed
later), and utilized to learn a surrogate model. Further, we present a surrogate model training example
to show the application of the data set.

2 Power System Dynamic Simulation, Test Systems, and Computational
Challenges

Power system dynamics subjective to external disturbances and controls can be formulated as a set of
differential algebraic equations (DAEs) as follows:

ẋt = f(xt,yt, dt,at, ),xt0 = x0, (1a)

0 = g(xt,yt, dt,at),yt0 = y0, (1b)

where 1a represents system dynamics; xt represents dynamic state variables, such as the generator
rotor angles and speeds, etc.; 1b represents power balance at each bus; yt represents the algebraic
state variables of the power grids such as voltages at nodes (or buses) of the grid; x0 and y0 are
initial values;at represents control actions such as load shedding; and dt represents the disturbance.

For large-scale power systems, the dimension of the DAEs is high and the problem is computationally
intensive to solve. The GridPACK Palmer et al. [2014], developed by the Pacific Northwest National
Laboratory (PNNL), is a notable open-source software platform tailored for power grid system
simulation and analysis. One of the prominent features of GridPACK is its inherent capability to
harness the computational muscle of HPC resources efficiently.

Even with HPC resources, it is still challenging to run a large number of power system dynamic
simulations for training reinforcement learning (RL) agents for controlling power systemsHuang
et al. [2022]. This computational demand is primarily attributed to the exhaustive interaction with
the environment required by most RL algorithms. Given these computational constraints, there is
an emerging imperative to engineer a surrogate model, which can emulate power system dynamics,
thereby optimizing the computational efficiency.

The IEEE 300-bus system is a widely recognized benchmark power system network in the field of
electrical engineering and power systems research. It serves as a valuable tool for evaluating various
power system analysis and optimization techniques. This system features 300 buses or substations
interconnected by transmission lines and transformers.
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3 The Data Set

In our approach, we employed a predetermined rule-based policy, specifically the UVLS protocol,
augmented with stochastic noise, to synthesize system trajectories across diverse operational scenarios
for training. The resultant offline dataset was constructed through preprocessing of trajectory data,
organized into multi-step transition tuples. UVLS is a systematic strategy designed to maintain grid
stability. When the system experiences undervoltage conditions, which can jeopardize the integrity
and reliability of the power system, UVLS is activated to deliberately disconnect specific loads. This
action is predicated on a hierarchy of predetermined setpoints, ensuring that only non-essential loads
are shed first, thereby preventing widespread blackouts and mitigating potential damages to the grid
infrastructure.

We curated the offline dataset by leveraging the following methodologies:

(1) Employing an UVLS policy and subsequently infusing stochastic perturbations, in the form
of random Gaussian noise (zero-mean with a standard deviation of 0.1), to the resultant
actions (from -0.2 to 0, representing percentages of load shed).

(2) Integrating power flow and fault scenarios, specifically designed for the training duration.

(3) Employing a GridPACK-facilitated time-domain simulation to yield voltage trajectory data,
governed by the action sequences from the UVLS policy augmented with random noise.

(4) Formulating the M -step transition tuple, {st, at, st+1, at+1, · · · , st+M}, derived from the
aforementioned voltage trajectory data, and subsequently amalgamating it into the offline
dataset, Doffline.

The dataset comprises inputs (X) and corresponding outputs (y), with X being structured as a
multidimensional array of dimensions 600× 80× 180. The first dimension (600) represents the total
number of samples in our dataset, each corresponding to a different combination of fault location and
random noise. We have considered six distinct fault locations in our study. The second dimension
(80) represents the number of discrete time steps observed during each simulation, referred to as
"rollouts". These time steps capture the dynamic behavior of the power system. The third dimension
(180) of X is further divided into various components, including:

(1) 108-bus Voltage Measurements: This subcomponent encompasses voltage measurements
taken across the power system at different buses. Figure 1 shows an example of voltages
from ten buses during fault 1.

(2) 34 Load Bus Actions: Within each time step, actions are specified for 34 load buses. These
actions pertain to the manipulation or control of loads at these buses.

(3) Additional Information: For each time step, four supplementary pieces of information are
provided: (i) Start time of the fault; (ii)Duration of the fault; (iii) Step size of the fault; (iv)
The time distance from the current step to the start of the fault.

Figure 1: Example of Voltages during Fault 1.
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As for the outputs (y), they consist of voltage measurements across the power system, specifically
encompassing 108 voltage values. These voltage measurements reflect the electrical state of the
power grid at each corresponding time step.

In summary, our dataset is structured to encompass diverse fault scenarios, each with specific fault
locations and random noise variations. The input data (X) encapsulates dynamic information about
the power system, including voltage measurements, load bus actions, and auxiliary fault-related
details. The output data (y) comprises voltage measurements that serve as indicators of the system’s
response to these fault scenarios and dynamic conditions. This dataset serves as a valuable resource
for the analysis and modeling of power system behavior under fault conditions, offering insights into
the system’s dynamic responses.

4 ML-based Application

In our research, we harness the capabilities of deep neural networks (DNNs) to model the transition
dynamics in power system simulations. Specifically, we employ a DNN denoted as fϕ(st, at). Our
DNN architecture comprises three layers with respective hidden units of 1000, 500, and 200. Rectified
Linear Units (ReLU) serve as the activation function throughout the layers. The activation function
for the output layer is Sigmoid. Conventionally, the next state st+1 is directly inferred from the
current state st and the taken action at. Thus, we represent this relation as st+1 = fϕ(st, at). Given
a compilation of state-transition tuples, denoted as D = {(st, at, st+1)}, the training of fϕ(·, ·) is
done by minimizing the loss function:

L(ϕ) = 1

|D|
∑

(st,at,st+1)∈D

∥st+1 − fϕ(st, at)∥22 (2)

The above mentioned model formulation, given by st+1 = fϕ(st, at), exhibits computational
inefficiencies when st and st+1 are proximal in the state-space, as elucidated in Nagabandi et al.
[2018]. Consequently, this model configuration, fϕ(st, at), tends to exhibit inaccuracies in predicting
future states. This challenge becomes more pronounced under: (a) intricate dynamics, exemplified in
power systems, and (b) minute temporal intervals between sequential time steps. Furthermore, within
the context of Deep Reinforcement Learning (DRL), it becomes imperative to accurately propagate
dynamics across extended horizon rollouts. Any discrepancies in these dynamics culminate in the
amplification of error throughout the said horizon. In response to these challenges, our approach
incorporates: (a) the differential between successive states while defining fϕ(·, ·), expressed as
st+1 − st = fϕ(st, at), and (b) a multi-step loss function, represented by (3). This stands in contrast
to the traditional single-step loss function, defined in (2). For a structured formulation of the M -step
loss-driven training of fϕ(·, ·), we adhere to the methodology delineated in Yang et al. [2020]. We
follow the steps below to formulate the multi-step (M -step) loss based training of fϕ(·, ·):

(a) Construct the M -step ground-truth transition tuple, denoted as DM =
{(st, at, st+1, at+1, · · · , st+M )}, which encapsulates state and action sequences
over the designated horizon.

(b) Forecast the future state sequence commencing from st, by employing the recurrence
relation:

ŝt+τ+1 = ŝt+τ + fϕ(ŝt+τ , at+τ )

spanning from τ = 0 to M . It is imperative to emphasize that, barring the inaugural iteration,
the DNN fϕ(·, ·) utilizes the estimated states ŝt+τ as opposed to the predicted states st+τ for
its inputs. Incorporating estimated states as successive inputs to the DNN aids in attenuating
the amplification of prediction errors across extended horizons.

(c) The DNN undergoes a training regimen employing mini-batch stochastic gradient descent,
with the objective of minimizing the loss as articulated in (3).

Lms(ϕ) =
1

|DM | ×M

∑
(st:t+M ,

at:t+M−1)
∈DM

M−1∑
τ=0

∥∥∥st+τ+1 − ŝt+τ+1

∥∥∥2
2

(3)
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In the experimental setup, we selected a 5-step loss configuration, denoted as M = 5. The DNN
undergoes an optimization phase employing the mini-batch stochastic gradient descent algorithm,
facilitated by the ADAM optimizer. The hyperparameters for this phase are as follows: learning
rate α = 0.001, first moment coefficient β1 = 0.9, second moment coefficient β2 = 0.999, and
smoothing term ϵ = 1× 10−7. The surrogate model performance on the offline data set is shown in
Table 1. We randomly selected 10% of the fault cases to be the testing set and 9% of the cases to be
the validation set.

Table 1: Mean Square Errors for the Surrogate Model across Different Phases
Phase MSE

Training 2.0252× 10−7

Validation 1.0594× 10−7

Testing 2.6207× 10−7

Comparative analysis indicates that the surrogate model executes approximately an order of magnitude
faster than its GridPACK counterpart. It is salient to highlight that this computational disparity is
anticipated to widen commensurately with the upscaling of power system dimensions.

5 Prospective Applications

The use of surrogate models in our approach significantly enhances the efficiency of model-based
reinforcement learning training. Traditional methods often suffer from being both time-consuming
and requiring extensive sampling, which can be infeasible, especially in complex scenarios like power
grid management. In contrast, our surrogate model-driven approach allows for more rapid insights
and actionable outcomes with fewer data samples. This efficiency has profound implications for
various applications. For instance, in the realm of grid stabilization and reliability, it enables real-time
decisions that help stabilize the grid during unpredictable fluctuations. Similarly, as the integration
of fluctuating renewable energy sources becomes increasingly common, our method offers a viable
solution to predict and manage these variations, ensuring a fine balance between renewable inputs
and grid stability.

6 Conclusion

In this work, we have presented a valuable dataset stemming from power system simulators, specifi-
cally curated for the advancement of surrogate model-driven reinforcement learning in power grid
voltage control. We believe this dataset will pave the way for innovative solutions in grid management,
addressing both current challenges and future complexities. We encourage researchers and practition-
ers to leverage this resource, fostering collaborative advancements in the realm of sustainable and
efficient power systems.
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