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Abstract

A new generation of radio telescopes are being built to map the growth of cosmolog-
ical structure throughout the majority of the observable universe, giving us access
to new cosmological information that will shed light on outstanding questions in
astrophysics and cosmology. These telescopes use 21 cm emission from neutral
hydrogen as a tracer of structure, but at the low radio frequencies that they operate
face a daunting systematics suppression challenge. These systematics are wide
ranging, and are generally considerably brighter than the underlying cosmological
signal of interest, setting up a delicate signal separation problem that has yet to
be overcome by the field. We present the first differentiable, end-to-end forward
model for 21 cm cosmology that will allow us to better subtract low-level system-
atics and compute more robust errorbars. This framework is made possible by
high-performance machine learning frameworks that use automatic differentiation
to quickly compute exact posterior gradients that are then fed to gradient-aware
optimization and posterior sampling routines. In this work we give an overview
of the problem statement, demonstrate a proof of concept for the framework, and
discuss near-term improvements for future works.

1 Introduction

Neutral hydrogen is ubiquitous throughout the universe, making it an ideal probe of the growth of
cosmological structure over the near entirety of cosmic time. In particular, the hyperfine splitting of
the neutral hydrogen ground state emits or absorbs a photon at a wavelength of 21 cm, which has been
widely used to study the structure of our own Milky Way galaxy and of nearby galaxies. However,
this signal can also be used to map out large scale structures at cosmological distances [1], putting its
measured redshifted emission in the low-frequency part of the radio spectrum (∼ 100 MHz).

A new generation of radio telescopes are being built to capitalize on the vast quantity of cosmological
information traced by this spectral line, which will shed light on an array of science topics, ranging
from the formation of the first stars and galaxies at Cosmic Dawn, the nature of dark energy, and the
nature of inflation [2]. However, these telescopes face the challenge of bright contaminating emission
from non-thermal synchrotron emission at these low radio frequencies, emanating not only from
our own galaxy but from the numerous population of radio galaxies spanning the sky. Theoretical
models tell us that the background cosmological signals of interest traced by the redshifted 21 cm
emission is roughly 105 times weaker than these foreground contaminants [3], setting up a delicate,
high dynamic range signal separation problem that has yet to be solved by the field.
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While 21 cm analysis pipelines are becoming increasingly sophisticated, the field still struggles in
being able to propagate uncertainty from the various components in our complex, high-dimensional
and non-linear data model down to our final data products. In other words, we have yet to build a
framework capable of exploring the joint posterior distribution between systematics, foregrounds,
and the cosmological signal. This is part because of the immense scope of the data model for 21 cm
interferometers, which include multiplicative responses in our sky and instrumental model (thus
resulting in a set of model parameters that have non-linear relationships), in addition to the many Ns
of our raw dataset: every night these telescopes produce datasets with O(103) frequency channels,
O(> 103) time integrations, O(> 103) antenna-pair correlations (referred to as “baselines”), all
coming from a sky brightness distribution that is generally represented with O(> 105) pixels.

In this work, we present the first end-to-end, differentiable forward model for redshifted 21 cm
telescopes, which can jointly model sky signals along with the telescope’s instrumental response
at the various stages of its measurement. Fundamentally, the forward model is a computational
representation of the radio interferometric measurement equation, which describes how the raw
telescope observable (referred to as the visibility) is related to the incoming sky radiation as its
measured by the instrument [4; 5]. The visibility, Vjk, formed between two distinct antennas j and k
can be written as

Vjk(ν) = GjG
∗
k(ν)

∫
A(ŝ, ν)e2πi⃗bjk·ŝν/cB(ŝ, ν)dΩ, (1)

where B(ŝ, ν) is the specific intensity of electromagnetic radiation incident on the telescope from
angular direction ŝ and at observing frequency ν, b⃗ is the baseline vector formed between antennas
j and k, A(ŝ, ν) is the antenna efficiency along the direction ŝ and at frequency ν, also referred
to as its primary beam, dΩ is a solid angle differential where the integral is taken over the full 4π
steradians of the sky, and finally Gj , Gk are the complex-valued, front-end gains of the analog and
electronic of the telescope for antennas j and k. Note that many more kinds of effects can in principle
be considered (e.g. the ionosphere, radio frequency interference) but we will use this formulation for
now as it is the most common. Also note that all terms Equation 1 are also in principle time-dependent
(i.e. they can vary over the course of observations), although in this work we will assume they are
time-independent for simplicity. The multiplicative relationship between the various components on
the RHS of Equation 1 make this a non-linear optimization problem when trying to solve for them
jointly. As a consequence, current approaches generally leave one component as a free parameter
while assuming we know the other components, even though we generally do not know any of these
components to better than a few percent.

2 End-to-End Forward Modeling

Today, end-to-end forward modeling approaches are commonplace in the physical sciences, partic-
ularly for analyzing datasets in astrophysics and cosmology [e.g. 6; 7; 8]. These have been made
possible by the advent of large compute clusters equipped with high-memory graphics processing
units (GPUs), as well as new machine learning frameworks that leverage a technique known as
automatic differentiation [9] to compute gradients of a loss function very quickly. Utilizing GPUs
can dramatically accelerate the forward model runtime, while having access to gradient information
allows us to use high-performing optimization techniques such as quasi-Newton schemes, as well as
efficient posterior Markov Chain Monte Carlo (MCMC) sampling techniques such as Hamiltonian
Monte Carlo [10]. Together, this can bring some joint optimization and sampling inverse problems
that previously were untractable into the realm of feasibility.

Leveraging these same tools, we present the first end-to-end, differentiable forward model for the
21 cm measurement equation (Equation 1), where by “end-to-end” we mean a model that simulates
a sky signal all the way through the instrumental response down to the raw visibility data, and by
“differentiable” we mean a model that is easily and exactly differentiable (e.g. through a technique like
automatic differentiation). A visualization of the forward model is shown in Figure 1, demonstrating
how our model explicitly parameterizes various kinds of foregrounds and instrumental responses,
while seamlessly incorporating any prior knowledge we have on them (e.g. from lab measurements
or other telescope observations) into our posterior distribution, which is then differentiated and fed to
an optimization or MCMC sampling routine. Our model is implemented in PyTorch [11].
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Figure 1: A visualization of an end-to-end forward model for 21 cm radio interferometric mea-
surement equation (RIME), which produces the telscope observable known as the visibility. We
parameterize sky signals such as the cosmological signal (θ21cm) and foregrounds (θdiffuse, θpoint), as
well as the various components of the instrumental response (θbeam, θsep, θgain). Model visibilities
(m) are computed with a forward pass of the model, which are compared against raw visibility data
to form a likelihood given a noise model (CN ), while our prior incorporates any previous knowledge
we may have on those parameters, say, from lab measurements or from other telescope observations.
Implementing this in a deep learning framework like PyTorch enables us to rapidly compute exact
posterior gradients, which are used for parameter optimization and posterior sampling, as well as
seamlessly push our forward model onto a (multi)GPU node for further speedups.

3 Proof of Concept: FGs, Instrumental Response, and 21 cm Signal

Here we will demonstrate our framework on a simplified problem setup. For each component of
our model, we take their fiducial parameter values and perturb them to simulate a “truth” forward
model output, which we then seek to reconstruct via a large-scale unconstrained optimization. The
goal of this exercise is to 1. recover a residual signal that is above the thermal noise uncertainty, and
2. compute the propagated uncertainty from the foregrounds, instrumental response and the 21 cm
signal on this residual.

Our telescope model will be a scaled-down version of the Hydrogen Epoch of Reionization Array
(HERA) experiment [12], with 91 antennas packed in a hexagonal configuration. For simplicity, we
only use baselines with a total length of 40 meters or less. Our simulated frequency range spans 120 –
130 MHz, and our simulated observations span 5 hours in drift-scan mode. All components of the
model specified below have Gaussian priors with widths that are ∼ 10% of the parameters’ fiducial
values, with the exception of the 21 cm model which has a flat prior. Other components of the data
model include:

Diffuse galactic foregrounds – We use the (full-sky) Global Sky Model [13] as our fiducial model,
and use a complex spherical harmonic decomposition as a parameterization with ℓmax = 80. We
perturb their initial values by roughly 5% to simulate a realistic level of uncertainty. We parameterize
the frequency response with a second-order orthogonal Legendre polynomial.

Point source foregrounds – We use the GLEAM low-frequency radio point source catalogue [14] and
take all sources with a perceived flux density (i.e. after accounting for primary beam attenuation)
above 5 Jy, resulting in a few hundred sources. We perturb their amplitudes by 3%, and assume we
know their positions while leaving their amplitudes as free parameters.
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Figure 2: Power spectrum recovery after optimization and then posterior expansion. The raw
data (FG+EoR+Noise) is plotted in blue, the intrinsic noise floor in magenta, and the fiducial EoR
model in red. We plot the recovered EoR signal after optimization (black points) along with its
marginal posterior standard deviations (68% credible region errorbars), showing non-detections at
low-k (FG+Beam error dominated) and high-k (noise dominated), but detections at intermediate k
modes. The key advancement is the ability to forward model “Systematics” errorbars which tend to
peak at low-k.

Primary beam – We use an airy disk power pattern for the direction and frequency dependent antenna
primary response, decomposed as spherical harmonics with ∼10% perturbations. We enforce that
the beam response is unity at its zenith pointing throughout the optimization. We parameterize the
frequency response with a fifth-order orthogonal Legendre polynomial.

21 cm Signal – Our signal model resembles our diffuse foreground model but with additional frequency
terms (30 in total), and the angular extent is confined to a 10 degree x 60 degree patch on the sky.
The fiducial model is the default output from the 21 cmFAST code [15].

We omit the Gj gain terms for simplicity, as the above model is sufficient to demonstrate the capability
of the framework. In total, the model has roughly 50,000 parameters, We also add white thermal
noise at a low level such that a 21 cm detection could be possible (e.g. with ∼1000 hours of HERA
observations). Note that we apply a high-pass filtering to the visibilities across frequency to eliminate
some of the foreground modes that are strongly degenerate with the 21 cm signal modes [16].

We first run a joint optimization of our data model against our noisy, truth simulation, using the
LBFGS solver [17]. Then we expand the posterior distribution about its maximum a posteriori (MAP)
value, AD to compute the Hessian and then inverting it (i.e. a Laplace approximation). The results
are shown in Figure 2, showing the recovered EoR component (black points) with their marginal
standard deviations. We see that, relative to the raw data (blue), our recovered points make EoR
signal detections where previously the data were contaminated (k ∼ 0.15 Mpc−1). The other key
advancement in this work is being able to forward model a “systematics” error budget (in this case
a FG + beam error budget), which tends to peak at low Fourier k wavevectors. We see that the
recovered spectra are noise dominated at high k and systematics dominated at low k, but we see
fiducial detections at intermediate k modes. This allows us to be more confident when we begin to
make real signal detections (at intermediate k) that we are accounting for the full error budget of the
system (rather than just a thermal noise errorbar, which is generally the standard).

Future work will incorporate more types of known systematics, improve runtime efficiency to scale-up
to high angular resolutions, and use HMC to directly sample the posterior instead of expanding it via
a Laplace approximation.

4 Broader Impact

While the science drivers for 21 cm are diverse, the various kinds of systematics faced by 21 cm
telescopes operating at low and high frequencies can be quite similar, thus a breakthrough by
one experiment will help others as well. Lastly, 21 cm science is highly complementary to other
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cosmological surveys (e.g. DESI, Euclid) as well as astrophysical telescopes (e.g. JWST, SphereX),
and a robust 21 cm analysis pipeline would unlock a multi-pronged approach to inferring astrophysical
and cosmological parameters.

Acknowledgments and Disclosure of Funding

NK acknowledges support from NASA through the NASA Hubble Fellowship grant #HST-HF2-
51533.001-A awarded by the Space Telescope Science Institute, which is operated by the Association
of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

References
[1] S. R. Furlanetto, S. P. Oh, and F. H. Briggs, Physics Reports 433, 181 (2006), arXiv:astro-

ph/0608032 [astro-ph] .

[2] A. Liu and J. R. Shaw, PASP 132, 062001 (2020), arXiv:1907.08211 [astro-ph.IM] .

[3] A. Mesinger, B. Greig, and E. Sobacchi, MNRAS 459, 2342 (2016), arXiv:1602.07711 [astro-
ph.CO] .

[4] J. P. Hamaker, J. D. Bregman, and R. J. Sault, A&AS 117, 137 (1996).

[5] O. M. Smirnov, A&A 527, A106 (2011), arXiv:1101.1764 [astro-ph.IM] .

[6] B. Popovic, D. Brout, R. Kessler, and D. Scolnic, arXiv e-prints , arXiv:2112.04456 (2021),
arXiv:2112.04456 [astro-ph.CO] .

[7] C. Hahn, M. Eickenberg, S. Ho, J. Hou, P. Lemos, E. Massara, C. Modi, A. Moradinezhad
Dizgah, B. Régaldo-Saint Blancard, and M. M. Abidi, arXiv e-prints , arXiv:2211.00723 (2022),
arXiv:2211.00723 [astro-ph.CO] .

[8] BeyondPlanck Collaboration, K. J. Andersen, R. Aurlien, R. Banerji, A. Basyrov, M. Bersanelli,
S. Bertocco, M. Brilenkov, M. Carbone, L. P. L. Colombo, H. K. Eriksen, J. R. Eskilt, M. K.
Foss, C. Franceschet, U. Fuskeland, S. Galeotta, M. Galloway, S. Gerakakis, E. Gjerløw,
B. Hensley, D. Herman, M. Iacobellis, M. Ieronymaki, H. T. Ihle, J. B. Jewell, A. Karakci,
E. Keihänen, R. Keskitalo, J. G. S. Lunde, G. Maggio, D. Maino, M. Maris, A. Mennella,
S. Paradiso, B. Partridge, M. Reinecke, M. San, N. O. Stutzer, A. S. Suur-Uski, T. L. Svalheim,
D. Tavagnacco, H. Thommesen, D. J. Watts, I. K. Wehus, and A. Zacchei, A&A 675, A1 (2023),
arXiv:2011.05609 [astro-ph.CO] .

[9] A. Gunes Baydin, B. A. Pearlmutter, A. Andreyevich Radul, and J. M. Siskind, arXiv e-prints ,
arXiv:1502.05767 (2015), arXiv:1502.05767 [cs.SC] .

[10] R. Neal, in Handbook of Markov Chain Monte Carlo (2011) pp. 113–162.

[11] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, arXiv e-prints , arXiv:1912.01703
(2019), arXiv:1912.01703 [cs.LG] .

[12] D. R. DeBoer, A. R. Parsons, J. E. Aguirre, P. Alexander, Z. S. Ali, A. P. Beardsley, G. Bernardi,
J. D. Bowman, R. F. Bradley, C. L. Carilli, C. Cheng, E. de Lera Acedo, J. S. Dillon, A. Ewall-
Wice, G. Fadana, N. Fagnoni, R. Fritz, S. R. Furlanetto, B. Glendenning, B. Greig, J. Grobbelaar,
B. J. Hazelton, J. N. Hewitt, J. Hickish, D. C. Jacobs, A. Julius, M. Kariseb, S. A. Kohn,
T. Lekalake, A. Liu, A. Loots, D. MacMahon, L. Malan, C. Malgas, M. Maree, Z. Martinot,
N. Mathison, E. Matsetela, A. Mesinger, M. F. Morales, A. R. Neben, N. Patra, S. Pieterse,
J. C. Pober, N. Razavi-Ghods, J. Ringuette, J. Robnett, K. Rosie, R. Sell, C. Smith, A. Syce,
M. Tegmark, N. Thyagarajan, P. K. G. Williams, and H. Zheng, PASP 129, 045001 (2017),
arXiv:1606.07473 [astro-ph.IM] .

[13] H. Zheng, M. Tegmark, J. S. Dillon, D. A. Kim, A. Liu, A. R. Neben, J. Jonas, P. Reich, and
W. Reich, MNRAS 464, 3486 (2017), arXiv:1605.04920 [astro-ph.CO] .

5

https://doi.org/10.1016/j.physrep.2006.08.002
https://arxiv.org/abs/astro-ph/0608032
https://arxiv.org/abs/astro-ph/0608032
https://doi.org/10.1088/1538-3873/ab5bfd
https://arxiv.org/abs/1907.08211
https://doi.org/10.1093/mnras/stw831
https://arxiv.org/abs/1602.07711
https://arxiv.org/abs/1602.07711
https://doi.org/10.1051/0004-6361/201016082
https://arxiv.org/abs/1101.1764
https://doi.org/10.48550/arXiv.2112.04456
https://arxiv.org/abs/2112.04456
https://doi.org/10.48550/arXiv.2211.00723
https://arxiv.org/abs/2211.00723
https://doi.org/10.1051/0004-6361/202244953
https://arxiv.org/abs/2011.05609
https://doi.org/10.48550/arXiv.1502.05767
https://doi.org/10.48550/arXiv.1502.05767
https://arxiv.org/abs/1502.05767
https://doi.org/10.1201/b10905
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.01703
https://arxiv.org/abs/1912.01703
https://doi.org/10.1088/1538-3873/129/974/045001
https://arxiv.org/abs/1606.07473
https://doi.org/10.1093/mnras/stw2525
https://arxiv.org/abs/1605.04920


[14] N. Hurley-Walker, J. R. Callingham, P. J. Hancock, T. M. O. Franzen, L. Hindson, A. D.
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