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Abstract

The complex icy surface of Jupiter’s moon, Europa, has long fascinated planetary
science and astrobiology communities. NASA spacecraft observations of Europa
have revealed an enigmatic chaos terrain, characterized by jigsaw-like areas of
broken ice blocks caused by significant past subsurface disruption events. Specu-
lation suggests the ice crust in these regions may be thinner, potentially offering
better access to a warm ocean that may harbor complex organic compounds. These
regions are favorable targets for future solar system missions, and may offer ad-
ditional insight into Europa’s internal processes. Although substantial progress
has been made in visually cataloging chaos terrain, the precise mapping of ice
blocks is laborious, subjective, and resource-intensive. Leveraging the capabilities
of machine learning (ML) algorithms to expedite and automate such tasks will be
crucial to scale this effort to other solar system bodies. To address this, we explore
using a Mask R-CNN and transfer learning to detect and segment individual ice
blocks within chaos terrain. Our current model achieves a highest precision score of
71.8% and recall score of 67.6%. We present the current strengths and limitations
of our model and dataset while outlining avenues for further improvement. This
work aims to contribute to future mission planning for Europa and other solar
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system bodies. Additionally, it highlights the unique algorithmic challenges posed
by planetary science data and emphasizes the need for innovative ML solutions.

1 Introduction

Europa features a remarkably bright, relatively smooth icy surface [2, 6, 29, 47, 57, 21, 44, 11], and
a subterranean ocean speculated to potentially host the ingredients for life [42, 37, 23]. Over the
years, spacecraft missions like NASA’s Pioneer 10 and 11 [16, 17], Voyager 1 and 2 [52, 51], Galileo
[40], and Juno [36] have provided valuable imagery of the moon. Galileo was the first to unveil
Europa’s "chaos terrain" (example shown in Figure 1), where portions of ice crust fractured, drifted
apart, rotated, and refroze [56, 9, 53, 45], resulting in elevated blocks amid an expanse of coarse, dull,
“hummocky” matrix material, where original surface features are often obscured [9, 53, 20, 41, 39].
Remaining ice blocks exhibit distinct edges and morphologies ranging from large “plates” displaying
textural evidence of preexisting terrain, to smaller “knobs” with less visible preexisting terrain
features [21, 34]. Despite numerous formation hypotheses [22, 28, 12, 48, 15], no comprehensive
model explains all observed instances of chaos terrain [34]. Although NASA’s Juno spacecraft
captured high-resolution surface imagery of Europa, it was not designed for extensive chaos terrain
imaging; thus, Galileo observations remain the highest-quality available. Upcoming missions like
NASA’s Europa Clipper [30] and the European Space Agency’s JUpiter Icy Moons Explorer (JUICE)
[19] (both expected to arrive in 2030) will provide additional high-resolution surface imagery and
enable a deeper geological analysis of features like chaos terrain, addressing remaining questions and
enhancing understanding of their formation. These missions will also provide insight into physical
properties like ice shell thickness and chemical composition, heat and material transport, etc.

Despite the recent emphasis on the need for machine learning (ML) in scientific research [13], a
noticeable gap remains in ML-related publications, particularly at organizations like NASA, between
planetary sciences and other fields such as heliophysics, astrophysics and Earth science [3]. As
planetary science data volumes grow and demand for real-time spacecraft-based analysis rises,
implementation of ML algorithms will be critical for driving scientific discoveries. Our approach
seeks to maximize value for geoscientists by improving tracking of chaos ice block locations and
orientations over time, and incorporating labels from domain experts who intend to extend these
methods to unlabeled chaos regions.

2 Data

Our dataset utilizes regional mosaic maps (“RegMaps”) of Europa’s surface taken by the NASA
Galileo Solid-State Imager (SSI) [5, 4] provided by the U.S. Geological Survey (USGS) Astrogeology
Science Center, with resolutions ranging from 179-229 m/pixel [7]. Human labeling of ice blocks
within chaos terrain is a nuanced task that considers factors like area, surface attributes, elevation,
shape, etc. To ensure precise labeling and validation, we rely upon geoscientist expertise, incorporat-
ing georeferenced labels from chaos regions Co, aa, bb, dd, and A-E previously created by Leonard
et al. [34], along with blocks from regions ee, hh-kk, and F-I labeled as part of Mills [38] following
the same conventions. An unexpected mechanical failure with Galileo’s high gain antenna restricted
data transmission capabilities to only two low-gain antennas, resulting in reduced and low-resolution
images [31]. Due to these spatial limitations, consequently only regions with total areas ≥1,500
km2 that contain ice blocks ≥4 km2 were selected for labeling. Furthermore, uncertainties in the
spacecraft’s position and orientation introduced significant errors in surface feature locations, causing
misaligned images with displacement errors of up to 100 km [8]. In 2021, the USGS made extensive
photogrammetric corrections to the dataset to mitigate issues and improve usability [8]. We have
updated labels to account for these corrections. However, planetary science data still presents greater
inherent data quality challenges than Earth-based or conventional remote sensing data, especially
when contrasted with typical neural network training images. For instance, RegMaps still include
shadows, varying solar angles, and diverse ice block morphologies. Coupled with limited data
and increased object detection difficulty, these challenges pose a significant barrier to the effective
application of deep learning algorithms in this domain.
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(a) Raw image (b) Ground truth labels included

Figure 1: Partial image of Conamara Chaos Co, without (a) and with (b) labels.

3 Methods

For the selection of our detection and segmentation model, we opted to employ a Mask Region-
based Convolutional Neural Network (Mask R-CNN) framework [27], specifically built upon a
ResNet50 backbone [26]. This choice was motivated by the framework’s demonstrated robustness
in various applications, making it well-suited for addressing the specific complexities of Europa’s
chaos ice blocks, and the fact that Mask R-CNN was still widely-favored framework for instance
segmentation tasks within the scientific community at the time of initial project development. While
more recent and sophisticated algorithms, such as those belonging to the YOLO family [10] or
Transformer-based models [55], have since emerged, offering noteworthy advancements in capability,
their implementation would have required a substantial expansion of the project’s scope and likely
necessitated additional computational resources that were unavailable. Given the existing funding
constraints and organizational considerations, we chose to focus on a methodology that aligns with
the project’s initial objectives and resource availability. To overcome the inherent challenges of a
small dataset, we implemented transfer learning by leveraging pre-trained statistical weights derived
from the Common Objects in COntext (COCO) dataset [35]. This approach allowed us to fine-tune
the model, adapting it to the unique characteristics of chaos terrain images, without the need for
extensive labeled data specific to our target domain. We also used Leave-One-Out Cross-Validation
(LOOCV) [25] to assess our model’s performance.

We conducted pixel-level analyses for each chaos region, evaluating the overlap between ground
truth and predicted segmentation masks. Initial pixel segmentation masks were generate from the
georeferenced ice block labels. Training and test datasets were then created using overlapping,
uniformly-sized image windows from RegMaps, ensuring that each window contains at least one
label while removing cutoff labels. Hyperparameter optimization was executed using the Optuna
framework [1] in two stages. An optimal minimum Intersection-over-Union (IoU) threshold score
between 0.5 and 1 was first determined for each chaos region through a comprehensive sweep over the
images. Subsequently, various objective functions were tested to maximize either average precision,
recall, or F1 score calculated across all images. This structured setup revealed that maximizing
the average F1 score yielded the most robust overall metrics. The identified optimal parameters
included a learning rate of 0.001, batch size of 1, window crop size of 250x250 pixels, stride size
of 64, utilization of the Adam optimizer [32], incorporation of 3 trainable backbone layers, setting
a minimum area of 50 km2 for an ice block to be considered valid, incorporation of horizontal and
vertical random flips, and a final training duration of 15 epochs. Final segmentation maps were
created by aggregating logits across the entire chaos region, maintaining the same crop size, stride,
and score thresholds used during training. These predictions were then merged and superimposed
onto the original RegMaps, resulting in georeferenced maps that can be used to determine the true
coordinates and calculate areas for predicted ice blocks. This aspect holds particular significant value
for geoscientists seeking precise measurements in their research.
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4 Results and Discussion

Results for 250x250 images, including both pixel-wise and object-wise metric scores for each chaos
region, are summarized in Table 1. Segmentation map predictions for regions Co and gg are illustrated
in Figure 2. As anticipated, the model excels in Chaos Co, demonstrating robust performance in
both pixel-level and object-level scores, attributed to higher image resolution and the prevalence of
larger ice plates. Conversely, performance diminishes in regions with lower image resolutions, such
as Chaos aa, bb, ff, and gg, and where ice plates are scarce, particularly in Chaos D and Chaos E.
Additionally, the model frequently identifies analogous structures in areas beyond the boundaries
of chaos terrain, including elevated surface features like “lineae” [14]. Similar challenges were
observed in preliminary experiments with the recent Segment Anything model [33], exhibiting a
tendency to indiscriminately detect various objects unrelated to chaos terrain. While this presents
potential for broader geoscientific investigations, its effective integration would require more extensive
modifications beyond the current project scope and chaos terrain focus.

(a) Chaos Co (b) Chaos gg

Figure 2: Ground truth labels are in blue (false positives), model predictions (false negatives) are in
red, and their overlaps (true positives) are in pink.

Variation in the model’s successful identification of ice blocks is likely influenced by several factors.
Notably, it could be attributed to lower phase angles in certain RegMap images, as these can impact
image sharpness and texture. Expert labeling often requires adjustments like contrast stretching to
enhance feature differentiation and visual interpretation. Similar adjustments applied to pixel-level
maps may improve the model’s predictions. Additionally, given that our image windows represent
only small portions of complete RegMaps, and ice blocks are relatively small in size, precise edge
demarcation can significantly affect all metrics. However, since our work is not primarily focused
on exact edge testing, and we do not consider the original human labeling task to demand such a
high degree of precision, it is unrealistic to expect the model to achieve this, and this aspect currently
does not pertain directly to our core research question. Another concern arises from complexities
introduced by partial objects during the windowing process. To mitigate irregular label cutoff at
window edges, we implement a requirement that acceptable labels cannot occur along these edges.
While this approach effectively addresses the issue in similar overlapping windowing scenarios, we
recognize that different applications may necessitate alternative solutions. Given the overlapping
nature of windows, it is expected and permissible for smaller ice blocks to appear in multiple
training windows. However, this presents the challenge of smaller objects, like ice knobs, potentially
overshadowing larger objects like ice plates in the training set, leading to misclassifications. This
challenge is exacerbated in planetary science data collection during a flyby, where inherent variability
in image scales results in pixels having different distance representations. To counter this, we employ
a strategy of repeated inference on images, aggregating predictions and stitching them together into
a single image. Additionally, although initial data augmentation attempts did not yield significant
improvements, future exploration through detailed experiments is warranted for further refinement.

In contrast to an earlier study within our team led by Gansler et al. [18], which utilized Galileo imagery
(pre-photogrammetric corrections release) and a U-Net framework [46] for semantic segmentation
of ice blocks exclusively in the Conamara Chaos Co region, our current work implements a more
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Region Resolution (m/pix) Pixel-Level Object-Level
F1 Precision Recall F1 Precision Recall

A 229 0.355 0.718 0.236 0.166 0.424 0.103
aa 210-222 0.001 0.027 0.001 0.000 0.000 0.000
B 229 0.367 0.489 0.293 0.152 0.500 0.090
bb 210-222 0.026 0.242 0.014 0.008 0.167 0.004
C 229 0.530 0.598 0.476 0.227 0.600 0.140

Co 179 0.642 0.612 0.676 0.568 0.618 0.526
D 229 0.305 0.268 0.354 0.105 0.208 0.070
dd 218 0.171 0.211 0.144 0.155 0.240 0.115
E 229 0.197 0.367 0.135 0.082 0.333 0.047
ee 210 0.400 0.367 0.436 0.286 0.357 0.238
F 215 0.328 0.323 0.333 0.223 0.353 0.158
ff 222 0.063 0.679 0.033 0.043 1.000 0.022
G 215 0.355 0.284 0.473 0.289 0.333 0.256
gg 222 0.036 0.553 0.018 0.000 0.000 0.000
H 215 0.110 0.066 0.326 0.089 0.080 0.100
hh 210 0.430 0.353 0.549 0.427 0.614 0.327
I 215 0.439 0.397 0.491 0.380 0.543 0.292
ii 210 0.496 0.454 0.546 0.411 0.443 0.384
jj 210 0.362 0.285 0.496 0.308 0.293 0.325
kk 210 0.415 0.321 0.587 0.333 0.348 0.320

Table 1: Complete LOOCV metric scores at the pixel and object level for 250x250 windows.

extensive approach. This makes direct comparisons challenging, especially given that the earlier
approach achieved a maximum IoU score of only 0.286, and our study implemented a minimum
IoU of 0.5 during threshold sweeps. Furthermore, a recent investigation by Haslebacher et al. [24]
introduced LineaMapper, utilizing a similar Mask R-CNN setup for instance segmentation of four
linear surface features using Europa Galileo imagery: "bands," "double ridges," "ridge complexes,"
and "undifferentiated lineae." LineaMapper achieved a highest precision score of 68% (for double
ridges) and a highest recall score of 18% (for undifferentiated lineae), resulting in an average precision
of 32% and average recall of 13% across all classes [24]. It’s essential to note that while LineaMapper
faced similar challenges with the Galileo dataset as our work, the broader global distribution of these
linear features allowed for the utilization of additional high-resolution images, not available for chaos
terrain, and a larger training dataset. While several other studies have focused on machine learning
approaches for chaos terrain segmentation on other solar system bodies, such as Mars [49, 50], it
is crucial to emphasize that these studies primarily pertain to rocky surfaces rather than icy crusts,
which have vastly different geophysical contexts and implications. These distinctions underscore the
unique complexities and limitations inherent in chaos terrain segmentation, emphasizing the necessity
for cautious consideration when drawing comparisons.

5 Conclusion

Despite challenging data conditions, our approach demonstrates promise in detecting and segmenting
ice blocks within Europa’s chaos terrain. Nevertheless, we acknowledge the substantial room for
improving performance metrics and refining our methodology. We plan to conduct additional experi-
ments, exploring more advanced and powerful learning algorithms as alternatives to Mask R-CNN,
and incorporating additional relevant datasets. Looking ahead, the anticipation of acquiring higher-
resolution images from upcoming spacecraft missions holds considerable potential for enhancing
overall segmentation model performance. We also recognize the importance of considering variables
such as solar illumination angles and refining data augmentation techniques during future training
processes. Our work not only highlights the invaluable role of machine learning in planetary science,
but also serves as a foundational contribution to advancing our understanding of Europa’s intriguing
geophysical landscape.
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6 Broader Impacts Statement

Our work strives to benefit geoscientists by streamlining the identification and tracking of ice blocks
within Europa’s chaos terrain and concurrently aims to advance the intersection of machine learn-
ing and physical sciences. Moreover, our work transcends its immediate domain by highlighting
shared data challenges present across many STEM disciplines and emphasizing the need for tailored
approaches. We emphasize that our approach is designed to complement geoscientist expertise,
providing a powerful tool to support methodologies and reduce biases without replacing or under-
mining human knowledge. While we will continue to advocate for the adoption of similar machine
learning approaches in interdisciplinary communities (i.e. astrobiology) within planetary science
applications where we can contribute valuable insights, we believe it is also important to extend our
work to the broader machine learning community in order to foster cross-disciplinary collaboration
and garner sustained funding and support for future research endeavors. It’s important to note that at
its current stage, our project operates within the existing organizational funding and computational
limitations. By sharing our research and preliminary findings with the broader machine learning
community, we aim to underscore the potential impact of our work and lay the groundwork for
renewed funding and support. This will enable us to conduct more comprehensive analyses and
continue investigating additional machine learning approaches for similar problems. The authors
of this tool are committed to deploying and implementing it responsibly, ethically and accessibly.
Furthermore, we encourage the broader research community to scrutinize, build upon and improve
our work, fostering collaboration across disciplines.

7 Data and Code Availability

The photogrammetrically-corrected Galileo SSI images used for labeling are publicly available
through the USGS Astrogeology Science Center at https://doi.org/10.5066/P9VKKK7C. The labeled
dataset used in this work from Mills [38] can be found at https://doi.org/10.5281/zenodo.10162452.
These labels were created using the same conventions as Leonard et al. [34], but with corrected
imagery [8]. The original dataset used in Leonard et al. [34] is publicly available at https://doi.
org/10.5281/zenodo.6338798. The GitHub code repository for this research is available at https:
//github.com/marinadunn/europa-chaos-ML.

Computing Resources: Model development was conducted in a NASA-managed environment with
Python 3 [54] and PyTorch [43] on Google Cloud, equipped with a NVIDIA Tesla T4 GPU.
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A Supplementary Material

A.1 Additional Model Training Information

Hyperparameter Min Max Final
Crop Size 128 512 250

Stride 8 128 64
Batch Size 1 8 1

Trainable Backbone Layers 0 5 3
Learning Rate 0.01 0.0001 0.001

Optimizer ADAM SGD ADAM
Epochs 1 50 15

Table 2: Optuna hyperparameter search specifications.

Region Plates Knobs Total Region Lon (°) Lat (°) Mosaic ID Resolution
Objects Area (km2) (m/pixel)

aa 31 176 207 13151.6 129.63 9.42
17ESREGMAP01 210
17ESNERTRM01 218
11ESREGMAP01 222

bb 91 221 312 22553 128.42 1.32
17ESREGMAP01 210
17ESNERTRM01 218
11ESREGMAP01 222

Co 149 6 155 9020.9 86.65 9.66 E6ESDRKLIN01 179
dd 23 31 54 7965.5 125.38 3.64 11ESREGMAP01 218
ee 9 34 43 3127 131.26 -17.33 17ESNERTRM01 210
ff 23 24 47 2299.1 143.5 -23.41 17ESREGMAP01 222
gg 62 49 111 7750.2 141.83 -26.28 17ESREGMAP01 222
hh 38 70 108 6036.5 139.78 -36.17 17ESNERTRM01 210
ii 44 108 152 11718.4 137.01 -39.41 17ESNERTRM01 210
jj 31 48 79 6921.4 140.1 -41.28 17ESNERTRM01 210
kk 8 23 31 1787.6 137.12 -42.59 17ESNERTRM01 210
A 59 184 243 12255.3 -84.62 34.41 15ESREGMAP02 229
B 18 72 90 2761.3 -78.82 30.68 15ESREGMAP02 229
C 45 42 87 2936.8 -79.36 25.65 15ESREGMAP02 229
D 2 70 72 1953.7 73.95 25.66 15ESREGMAP02 229
E 3 84 87 7665.5 -82.59 22.41 15ESREGMAP02 229
F 14 27 41 2912.9 -75.28 -19.88 17ESREGMAP02 215
G 19 19 38 4286.6 -73.16 -21.25 17ESREGMAP02 215
H 5 15 20 2237.4 -70.99 -21.26 17ESREGMAP02 215
I 38 29 67 5923.9 -81.44 -30.66 17ESREGMAP02 215

Table 3: Ground truth label object counts and total region areas, and USGS Galileo SSI mosaic IDs
with corresponding image resolutions, for each Europa chaos region used during model training.
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