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Abstract

Fluorescence excitation emission matrices (EEMs) have a trilinear structure, align-
ing perfectly with the tensor rank decomposition, PARAFAC. Consequently,
PARAFAC has become essential for extracting information from freshwater EEMs,
pinpointing individual fluorophore groups, and tracking their behaviour across
diverse environment. However, EEMs of seawater, with typically low organic
matter, are often dominated by Rayleigh and Raman scattering, which deviates
from the trilinear model. Traditional one-dimensional interpolation to eliminate
these interferences varies in outcome based on its matrix application direction
and struggles with noisy data. Our proposed techniques, employing Whittaker
smoothing and CNN, effectively eliminate scattering signals, even in noise-rich
scenarios. Notably, CNN adeptly preserves the overall EEM shape across various
sizes and dimensions, establishing itself as an optimal choice for interpolating
scattering zones in EEMs of organic matter-deficient freshwaters.

1 Introduction

The origins, transformations, and conservation mechanisms of dissolved organic matter (DOM)
remain pivotal questions within marine and aquatic sciences. The systematic study of these properties
augments our understanding of environmental dynamics and the intricate interplay between carbon
and nitrogen cycles in watersheds [1]. Due to the highly intricate composition of DOM in natural
waters and the overlapping wide-band spectra, fluorescence signals cannot be attributed to individual
compound. Hence, researchers typically focus on groups of DOM fluorophores – sets of compounds
associated with distinct fluorescence bands, which in turn relate to the origin and transformation of
organic matter in waters [2]. The fluorescence excitation-emission matrices (EEMs), which capture
fluorescence signals across a multitude of excitation/emission wavelength pairs for each sample, offer
profound insights into DOM. The trilinear structure of EEM data aligns seamlessly with the tensor
rank decomposition known as PARAFAC [3]. PARAFAC has risen as a pivotal tool for identifying
individual components across varied environmental backdrops [4]. This synergistic combination of
EEM and PARAFAC is used for a broad range of freshwater studies [5], and extending to evaluations
of water treatment efficacy and quality control [6, 7].
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Certain sections of EEMs can pose challenges in PARAFAC modelling because they do not adhere
to a trilinear structure. The two primary sources of interference are Rayleigh and Raman scattering
[8]. Unfortunately, signals from both Rayleigh and Raman scattering are often prevalent in EEMs of
seawater, which typically have a low DOM content. Various techniques have been tested to eliminate
these inferences, including down-weighting of the scatter region (MILES), specific scatter modelling,
subtraction of a standard, application of constraints during decomposition, insertion of missing values,
or setting zeros outside the data region [3]. Of these, interpolation generally delivers the highest
efficiency [9]. The commonly used one-dimensional interpolation yields different results depending
on whether it is conducted row-wise or column-wise on the matrix. Moreover, in instances where the
noise level is high, which is often the case in natural waters, there is no guarantee that the fluorescence
signal neighbouring the scattering region will be strictly monotonic [10]. Thus, we have focused our
study on the implementation of multidimensional strategies to effectively purge interference from
scattering prior to PARAFAC modelling. We introduce two techniques, namely, two-dimensional
Whittaker smoothing [11, 12] and a purpose-built CNN model to rectify the signal in areas affected
by scattering.

2 Datasets

Synthetic Dataset 1 based on OpenFluor We generated two synthetic datasets using known
“ground truth” fluorophore spectra and their concentrations to compare the performance of the studied
methods. The first dataset was created for the selection, construction, and training of the optimal
neural network. It was derived from the PARAFAC decompositions of real spectra gathered in the
OpenFluor database [13]. From 230 sets of fluorophores with randomly generated concentration
values, we obtained a total of 100,000 spectra: 80,000 for the training set, 10,000 for the validation
set, and 10,000 for the test set.

The scattering bands in question are: 1st order Rayleigh scattering band (λem = λex), 1st order Raman
scattering band (λem = (1/λex −∆Raman)

−1), 2nd order Rayleigh scattering band (λem = 2λex),
and 2nd order Raman scattering band (λem = 2(1/λex −∆Raman)

−1).

Synthetic Dataset 2 Set of spectra was also obtained for which it was possible to perform
PARAFAC. The loadings for the simulated datasets were constructed from Gaussian peak func-
tions centred across the typical emission and excitation range of DOM. The dataset consists of 64
samples. Scores were calculated using an orthogonal Latin hypercube design. The scattering signal
was added in the same manner as for the first dataset. We investigated the sensitivity of the proposed
scatter handling methods to noise, adding varying levels of specially introduced noise to the spectra,
with ratios ranging from 10−3 to 5 · 10−1.

“Fluordata” dataset An experimental fluorescence dataset generated and measured by Åsmund
Rinnan and Jordi Riu has been chosen to demonstrate the differences between interpolation methods
[14] (class 4 contains 5 fluorophores). We have added the similar scattering band and vary the noise
level.

3 Methods

Whittaker smoother Whittaker smoothing [15] requires the surface to be sampled on a grid. Given
a vector of values z measured at uniform intervals, Whittaker smoother ẑ is computed by minimising
|z− ẑ|2 + λ |Dẑ|2 where the matrix D is constructed in such a way that multiplying it by a vector
results in a vector of differences of a given order between the points of the vector. The penalty weight
λ strikes a balance between smoothness and fidelity. We unfold the excitation-emission matrix F
(Fi,j = F (λem

i , λex
j )) into a vector z (zi+j·N = Fi,j for an N -row matrix) and then construct the

appropriate two-dimensional penalty using Kronecker products: D =
(

Dx⊗I
I⊗Dy

)
. For non-uniform

grids, we solve the Vandermonde system, finding the coefficients required to estimate the kth order
derivative from each k + 1 successive points of the grid [16]. We developed a sequential algorithm to
interpolate surfaces sampled on arbitrary grids, adhering to smoothness penalties of variable orders,
utilising Whittaker smoothing generalised for two-dimensional spectral data.
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Figure 1: Schematic representation of the final CNN architecture

In this work, difference orders of 1 and 2 were combined in different proportions to choose the best
shape of the estimated fluorescence signal. Since theoretical selection of penalty weight is not possible,
we have performed their optimisation on the synthetic dataset, minimising the root-mean-squared
error of signal reconstruction.

CNN description The resulting CNN model (Figure 1) consists of three blocks of 2 convolu-
tional layers each with MaxPool layer between the first two blocks and ConvTranspose layer
between 2nd and 3rd blocks. Each layer was followed by ReLU activation. Adam optimiser and
ReduceLRonPlateau scheduler were used. Training was done by minibatches of 16 EEMs at a time.
Since dimensions of EEMs are different, they were padded by zeros on each side to the maximum
dimension in a given minibatch, then padded again to make both dimensions even as required by
pooling layer in the architecture. Therefore, the model does not require fixed dimensionality of input
data for either training or inference.

The interpolation methods were compared based on the two performance metrics. For synthetic
datasets, where “ground truth” EEMs are known by construction, the resulting EEMs were compared
to the original ones, using the root mean squared error (RMSE) of reconstruction of the ground truth
fluorescence signal as the metric. The second synthetic dataset as well as the “fluordata” dataset
were decomposed using non-negative PARAFAC, and the estimated loadings were compared to the
ground truth values. The performance metric employed is the Tucker’s congruence coefficient (cosine
similarity, TCC) between the “ground truth” excitation and emission spectra and the excitation and
emission loadings estimated by PARAFAC after EEMs correction. The PARAFAC decomposition
was performed in the albatross R package.

4 Results

We began our consideration with the Synthetic dataset 1 (SD1). It would be straightforward to
evaluate the performance of our technique in terms of RMSE for the entire spectrum. Above all,
it’s worth noting the tremendous advantage of the CNN in terms of performance, 0.024 seconds per
spectrum, compared to 1.464 seconds when using Whittaker smoother. We identified a statistically
significant (via t-test) reduction in RMSE for CNN (Figure 2, left). Meanwhile, it’s essential to
highlight the distinct features of using both approaches. At low resolution (Figure 2, top row), the
CNN effectively removes the scattering signal, which consists of a single pixel, but also significantly
‘blurs’ the fluorescence signal to adjacent pixels. In contrast, Whittaker smoother works wonderfully
in such cases, as interpolation effectively occurs within a single pixel’s boundaries. In the case of
high resolution (Figure 2, bottom row), where scattering intersects with a large fluorescence signal
area, smoothing doesn’t fully interpolate the signal and beyond this area, which apparently relates
to the influence of neighbouring areas in two-dimensional interpolation. With CNN, the blurring
of the signal within a small number of pixels doesn’t have a significant impact. Based on this, we
suggested to processes the entire image as a whole (CNN) and also to replace part of the signal within
the scattering signal’s presence (CNN2).
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Since the main task was the improvement of PARAFAC decomposition, we have compared the
obtained PARAFAC components for Synthetic Dataset 2 (SD2) after scattering signal removal.
TCC between ground truth loadings and matching PARAFAC-estimated loadings (averaged over all
PARAFAC components) again demonstrates the ultimate performance of both techniques with slight
advantage of Whittaker (Figure 3b). But it also should be noted that the CNN keeps the advantage of
Whittaker methods to recover the true excitation and emission spectra of fluorophores in presence
of noise. In general, the RMSE is low across all noise level, while RMSE grew in two times for the
highest noise level in case of Whittaker. Nevertheless, both approaches again clearly demonstrate the
ability of the techniques to recover the shape of the fluorescence signal itself. This issue might be
caused by the use of data with an extremely asymmetric excitation and emission scale (35× 351).
This dataset was used for the convenience of comparison with previously obtained data for other
technique for scattering handling.

Lastly, when examining the real data from the Åsmund dataset (as shown in the Figure 3a), we find
that the neural network takes the lead when its results applied solely to the scattering signal’s range.
Nonetheless, using the entire EEM matrix as an option also yields satisfactory results, even at a noise

Figure 2: The best and the worst results obtained by both methods for samples from SD1, and the
distribution of their recovery error.
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(a) The “fluordata” dataset.
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(b) The synthetic dataset 2.

Figure 3: Average Tucker’s congruence coefficient between the ground truth loadings and the
estimated loadings for the two datasets for which PARAFAC was feasible.
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level of 0.2. If we consider the components resulting from decomposition, it’s worth noting the high
resilience of PARAFAC to noise in the absence of interference from scattering signals. The most
challenging component to reconstruct – the fluorescence of tyrosine, which considerably overlaps
with the scattering signals – is reliably predicted at high noise levels with the use of CNN2 only.

5 Conclusions

Thus, we can conclude that both Whittaker smoothing and CNN methods offer high performance for
scattering signal removal across various signals, even with high levels of noise. However, the most
optimal approach involves replacing the scattering area with a signal processed using CNN, enabling
signal processing up to a 0.5 noise-to-signal ratio. Furthermore, CNN preserves the general shape of
the EEM, regardless of its dimensionality and size, in the most accurate manner. This positions CNN
as an ideal candidate for interpolating scattering areas in EEMs of fresh waters with low levels of
DOM, and consequently, a low signal-to-noise ratio. These observations were exemplified using the
real “fluordata” dataset, which was obtained from a mixture of prevalent natural fluorophores.
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