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Abstract

Ab initio methods offer great promise for materials design, but they come with a
hefty computational cost. Recent advances with machine learning interatomic po-
tentials (MLIPs) have revolutionized molecular dynamic simulations by providing
high accuracies similar to ab initio models but at much reduced computational cost.
Our study evaluates the ultra-fast force fields (UF3) potential, employing linear
regression with cubic B-spline basis for assessing effective two- and three-body
potentials. On benchmarking, UF3 displays comparable precision to established
models like GAP, MTP, NNP (Behler Parrinello), and qSNAP MLIPs, yet is sig-
nificantly faster by two to three orders of magnitude. A distinct feature of UF3
is its capability to render visual representations of learned two- and three-body
potentials, shedding light on potential gaps in the learning model. In refining UF3’s
performance, a comprehensive sweep of the hyperparameter space was undertaken.
While our current optimizations are concentrated on energies and forces, we are
primed to broaden UF3’s evaluation spectrum, focusing on its applicability in criti-
cal areas of molecular dynamics simulations. The outcome of these investigations
will not only enhance the predictability and usability of UF3 but also pave the way
for its broader applications in advanced materials discovery and simulations.

1 Introduction

Molecular dynamics (MD) simulations play a pivotal role in understanding and predicting the
behavior of materials at atomic and molecular scales [1]. Density functional theory (DFT) [2, 3], a
quantum mechanical modeling method, offers detailed insights and precise predictions about these
systems. However, the high computational costs and O(N)−O(N3) scaling associated with DFT
make it challenging for use in extensive MD simulations spanning long durations [4]. Classical
interatomic potentials [5, 6] offer computational efficiency but lack DFT’s accuracy [7, 8]. The
advent of machine learning interatomic potentials (MLIPs) has provided an effective alternative,
combining the efficiency of classical potentials with near-DFT accuracy in energy, force, and property
predictions [9, 10, 11, 12]. However, a challenge arises with many state-of-the-art MLIPs: while more
efficient than DFT they can still be computationally too demanding. This heightened computational
requirement complicates MD simulations on expansive systems over extended durations and also
presents hurdles in model interpretation.

In the landscape of machine learning potentials, several have emerged as prominent contenders
in accurately modeling atomic systems. These include the neural network potentials (NNP) [9],
Gaussian approximation potential (GAP) [10], moment tensor potential (MTP) [11], spectral neighbor
analysis potentials (SNAP) [12], and its variant, the quadratic SNAP (qSNAP) [13]. Central to the
efficacy of these potentials is the concept of ‘fingerprints’ or ‘descriptors’. These are intricate
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representations of atomic environments with flexible functional form, which are subsequently passed
through an embedding function to yield the desired predictions. For readers desiring a comprehensive
understanding of each method’s details, the provided references offer an in-depth exploration.

This study builds on previous work comparing machine learning potentials in energy and force
prediction accuracy using a consistent dataset of elements [14]. A primary focus of this study is the
ultra-fast force field machine learning interatomic potential (UF3 - MLIP) [15]. We embark on a
detailed juxtaposition of UF3 against prevailing state-of-the-art potentials, particularly in energy and
force predictions.

2 Ultra-Fast Machine Learning Potential

The UF3-MLIP is formulated as a function of atomic positions Ri and species σi. It builds on the
many-body expansion of the energy of atomic systems. By truncating its expansion at the three-body
term, UF3 strikes an optimal compromise between computational efficiency and predictive accuracy
[15]:

E =
∑
i,j

V2(rij) +
∑
i,j,k

V3(rij , rik, rjk) (1)

where indices i, j, k of the summation run over all atoms, V2(rij) is the two-body contribution and
V3(rij , rik, rjk) is the three-body contribution.

Using a spline basis with compact support, UF3 represents effective two- and three-body interactions.
It employs cubic B-splines and tensor product splines for its smooth and efficient representation:

V2(rij) =

K∑
n=0

cnBn(rij) (2)

V3(rij , rik, rjk) =

Kl∑
l=0

Km∑
m=0

Kn∑
n=0

clmnBl(rij)Bm(rik)Bn(rjk) (3)

UF3’s training uses regularized linear regression to optimizes the coefficients cn and clmn of the
two-and three-body such that energies and forces are fit to data from quantum mechanical data. The
loss function incorporates Tikhonov regularization. The ridge regularizer λ1 imposes a penalty on
large coefficients to prevent overfitting and mitigates coefficient fluctuation in response to change in
data. Meanwhile, the curvature regularizer λ2 ensures the smoothness of the learned potential. The
loss function for two-body is

L =
κ

σ2
E |E|

∑
s∈S

(E(s)− Es)2 +
1− κ

σ2
F |F|

∑
s∈S

(−∇E(s)−Fs)
2

+ λ1

K∑
n

c2n + λ2

K∑
n

(cn − 2cn+1 + cn+2)
2

(4)

where κ ∈ [0, 1] is the effective weight of energy/force residual, E(s) is the predicted energy, and
|F| and |E| denote the number of forces and energy observation in training set, respectively.

A standout attribute of the UF3 framework is its interpretability. Given its reliance on tangible
physical parameters like inter-atomic distances, it paves the way for straightforward visualization of
its model. This facilitates easy identification of any anomalies or unphysical behaviors in the learned
patterns.

3 Methodology

The objective of this study is to compare the performance of UF3 on energy and force prediction by
juxtaposing it with other state-of-the-art MLIPs.

While recent advancements in MLIPs are commendable, a meticulous and systematic evaluation,
especially on a standardized dataset, remains largely elusive. It is in this context that the efforts
of Ong et al. [14] stand out; they put forth a comprehensive dataset for MLIP comparison, which
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encompasses a diverse range of atomic local environments associated with six elements: Ni, Cu, Li,
Mo, Si, and Ge. Selected for their diverse crystal structures and chemistries, the dataset covers ground-
states, strained structures, ab initio MD simulations of bulk supercells at elevated temperatures, and
even structures with single vacancies. It’s worth noting that this data, drawn from first-principle
calculations executed via VASP, come pre-partitioned into training and testing sets.

The UF3 potential adopts a two-tiered hyperparameter system. The ‘outer’ hyperparameters in
featurization guide both initialization and the learning of atomic environments, while the ‘inner’
hyperparameters of the loss function direct the least square optimization. Specifically, the outer
hyperparameters set the maximum and minimum cutoff distances between atoms and determine the
number of basis splines for each spline. In contrast, the inner hyperparameters address aspects like
the effective weight of the energy/force residual in the loss function and the regularization parameters,
namely the two- and three-body ridge and curvature regularizers. It’s important to underline that
adjustments to the outer hyperparameters necessitate the generation of new representation vectors,
a process that is both time-intensive and computationally demanding, making it the most resource-
intensive step in the UF3 framework. This distinction of hyperparameters into tiers is based on their
computational complexity.

4 Results and Optimization

Ong et al. performed a detailed comparison of state-of-the-art MLIPs in energy and force prediction
for elemental metals [14]. To ensure a consistent comparison, we optimized our outer hyperparameter
in the vicinity of the parameters specified in Ong et al. Following the inner-hyperparameter optimiza-
tion, the resultant energy and force errors are depicted in Fig. 1. These figures underscore that UF3
offers accuracy on par with GAP, MTP, and qSNAP MLIPs for face-centered cubic (FCC) crystals, all
while significantly reducing computational cost [15]. Notably, in more open structures like diamond
and body-centered cubic (BCC), all MLIPs, including UF3, showed diminished accuracy, with UF3
ranking either third or fourth among sophisticated models. Additionally, UF3 and other MLIPs
outperformed spline-based empirical potentials like s-MEAN [16].

Figure 1: Energy errors (left) and Force errors (right) for UF3 compared to other MLIPs. UF3
exhibits comparable accuracy to GAP, MTP, and qSNAP for FCC crystals, highlighting its efficiency.
However, its precision is slightly lower for more open structures like diamond and BCC as well as
others, but it still ranks third or fourth in terms of accuracy.

We further demonstrate the utility of UF3 potentials through visual analysis, as exemplified in Fig. 2
for nickel. These visual representations, by dissecting contributions to the interatomic interactions,
lay bare the intricacies of the model. Critical features such as minima, both repulsive and attractive
contributions, and the presence of inflection points are discernible, granting a deeper understanding
of nickel’s chemical bonding characteristics. This visualization makes the intricacies of UF3 directly
interpretable.
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We evaluated property predictions using UF3 models optimized for energy and force, comparing
them with DFT data and other advanced MLIPs. These comparisons, illustrated in spider plots (Fig.
3), show UF3’s high predictive accuracy for properties like cubic elastic constants, bulk modulus, and
lattice constants, particularly for Ni and Cu. Discrepancies notably arise in predicting properties for
Li, where UF3 and other MLIPs diverge from DFT results, partly due to the small magnitude of Li’s
properties. This variation in performance across elements highlights the critical role of having diverse
and representative training data. Although the dataset used was comprehensive, the effectiveness of
UF3 and similar models is limited when training data lacks representation for specific properties.
Thus, ensuring diverse and representative training data is paramount for consistent and optimal model
performance.

5 Future Works

Our study revealed that optimizing the UF3-MLIP for energy and forces results in impressive
performance, despite its straightforward physically-inspired structure. Notably, our optimization
focused primarily on minimizing energy and force errors, which led to the employment of minimal
regularization. However, we propose that a slight increase in curvature regularization may yield a
smoother potential. This adjustment could marginally reduce the model’s accuracy on energy and
forces on the testing data, yet potentially enhance its application in property prediction and dynamic
simulations.

(a) Two-body contribution (b) Three-body contribution

(c) Sliced view of three-body contributions at certain angles.

Figure 2: Visualization of UF3 applied to Nickel, showcasing the mapping of energy and force
data onto effective two- and three-body terms. Through this representation, various features —
from minima to inflection points — elucidate Nickel’s chemical bonding characteristics. This clear,
direct depiction highlights the interpretability advantages of UF3 over many other machine learning
potentials.
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Figure 3: Spider plots comparing the predictive capabilities of various MLIPs with DFT benchmarks
for different properties - cubic elastic constants C11, C12, C44, bulk modulus (B), vacancy formation
energy (Ev) and lattice constant (a).

It is also crucial to acknowledge that the UF3 potentials, as utilized in this study, were specifically
tailored for energy and force predictions. Their effectiveness in predicting other properties was not
considered during the optimization process. Moving forward, we aim to incorporate these relevant
properties directly into the optimization loop. This approach is intended not only to enhance accuracy
but also to yield more functionally optimal potentials. Emphasizing the practicality of MLIPs in
dynamic simulations is essential, as the most accurate potential is not always the most applicable or
physically relevant one [17, 18]. Our subsequent steps include evaluating UF3’s performance in MD
simulations, especially for targeted applications. Additionally, we emphasize the need for tailored
human oversight in MLIP training. For specific uses like elasticity calculations, training data should
predominantly consist of bulk structures, which is feasible given UF3’s reduced computational needs
and effective training with less data.

In conclusion, we aim to refine UF3 optimizations to balance accuracy with practical usability in
dynamic simulations, ensuring the developed potentials are both precise and widely applicable.
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