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Abstract

Galaxies are biased tracers of the underlying cosmic web, which is dominated
by dark matter components that cannot be directly observed. The relationship
between dark matter density fields and galaxy distributions can be sensitive to
assumptions in cosmology and astrophysical processes embedded in the galaxy
formation models, that remain uncertain in many aspects. Based on state-of-the-art
galaxy formation simulation suites with varied cosmological parameters and sub-
grid astrophysics, we develop a diffusion generative model to predict the unbiased
posterior distribution of the underlying dark matter fields from the given stellar
mass fields, while being able to marginalize over the uncertainties in cosmology
and galaxy formation.

1 Introduction

The nature of dark matter (DM) remains one of the most enigmatic questions in cosmology. Direct
observation of dark matter remains elusive. N-body simulations have in the past [1] been used to
unveil the dark matter density field from tracers such as galaxies. Over the last decade, significant
progress has been made in cosmological hydrodynamic simulations of galaxy formation [e.g. 2, 3, 4].
These simulations study how galaxies evolve over cosmic time and allow more accurate exploration
of the relationship between observed galaxy distributions and underlying dark matter fields. For
example, previous work of Hong et al. [5] developed a convolutional neural network model based
on the IllustrisTNG simulation, using the stellar density and velocities to regress the otherwise
unobservable dark matter density maps. However, machine learning models trained solely on a single
simulation can not accommodate the substantial uncertainties inherent in the astrophysical processes
assumed by galaxy formation models, as well as the specific cosmological parameters employed
in that simulation. Moreover, it is important to develop probabilitic models, such as [6], that can
describe our uncertainties in the way that galaxies connect to the underlying dark matter distribution
to answer questions such as what is the likelihood of a certain dark matter halo mass associated with
a given galaxy.
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In this work, we develop a diffusion generative model trained based on CAMELS simulation
suites [7, 8] that contain more than 1000 state-of-the-art galaxy formation simulations with varied
cosmological parameters and sub-grid astrophysics, to reconstruct the underlying DM fields from
stellar fields. The primary goal of the model is to capture the relationship between the stellar fields
and DM fields by marginalizing over the uncertainties in the modeling of galaxy formation, and
predict the unbiased posterior distribution of the DM fields conditioned on the given stellar field,
p(xDM|xstars).
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Figure 1: Top row: Input stellar field, corresponding true DM, and a sample DM from the diffusion
model. Bottom row: Posterior mean, posterior standard deviation, and pixelwise z-score from 100
posterior samples.

2 Methodology

Model We use the variational diffusion model developed by Kingma et al. [9] with a denoising
architecture similar to the U-Net [10] to model the posterior of DM density fields given stellar fields.
The conditional diffusion model generates a target DM density field in T = 250 refinement steps. It
begins with a random noise field xT

DM ∼ N (0, 1), and iteratively denoises it according to a learned
conditional probability pθ(x

t−1
DM|xt

DM, xstars) to ultimately generate a sample x0
DM ∼ p(xDM|xstars).

The denoising model therefore takes as input {xt
DM, xstars, t} and estimates the noise that was added

to the image at that timestep. In the forward diffusion process, we progressively add noise to an image
by sampling from q(xt

DM|x0
DM) = N (αtx

0
DM, σ2

t I), where αt and σ2
t are functions of γt, which is

assumed to be a linear function of time and whose free parameters are learned during training. Noise
is added to the sample in a variance-preserving way, i.e. α2

t = sigmoid(−γ(t)). The loss function
we optimize is the variational lower bound of the marginal likelihood.

Dataset For training, we use the Latin Hypercube set of the IllustrisTNG suite from the 2D
CAMELS Multifield Dataset [11] at z = 0. This contains 1000 simulations sampling a wide variation
range in cosmological and astrophysical parameters, reflecting the uncertainties of cosmology and the
complex astrophysical processes taking place in our current understanding of galaxy formation. This
training set includes 15 samples for each of the 1000 simulations, where each simulation is uniquely
varied by the parameter values of Ωm, σ8 (cosmological), ASN1, AAGN1, ASN2, and AAGN2 (astrophysi-
cal). The range of parameters is: 0.1 ≤ Ωm ≤ 0.5, 0.6 ≤ σ8 ≤ 1.0, 0.25 ≤ (ASN1, AAGN1) ≤ 4.00,
and 0.5 ≤ (ASN2, AAGN2) ≤ 2.0. The samples are 2D projections of 5h−1Mpc thickness from
the 3D density fields of stars and dark matter. We evaluate our model on the one-parameter (1P)
set, which contains 11 variations of a single parameter at a time. We take the log of each field and
standardize the dataset to have zero mean and unit variance. We augment the dataset by adding
random translations (with periodic boundary conditions), flips and permutations of the input and
output images. We keep the image size to the original 256× 256 pixels.
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Training We use a U-Net [10] like architecture with 4 blocks of double convolution followed by
strided downsampling layers. We employ group normalization [12] and residual connections [13] in
each block, and use the AdamW optimizer [14] with a learning rate of 1× 10−4. We also initialize
the learned linear noise schedule with γ(t) = 18.3 t− 13.3. We train the model using the PyTorch
Lightning framework [15] with a batch size of 12 for 60000 gradient steps.

3 Results

We first compare the DM fields sampled from the diffusion model for the CAMELS simulations at
the fiducial parameters. In the top row of Fig. 1, we show an example stellar map together with the
ground truth underlying DM map, and one of the samples from the diffusion model. The second row
shows the diffusion model’s posterior mean and standard deviation from 100 samples, conditioned
on the same stellar field. The posterior standard deviation and the pixelwise z-score, computed as
Truth - Posterior Mean

Posterior Std , allow us to assess whether the diffusion model’s uncertainty is sufficient to account
for deviations from the target field. The posterior standard deviation is lowest at the positions of
structures that were present in the stellar field, while the z-score is higher for filaments that are
present in the target DM field but do not correspond to structures in the stellar field. Note that the
z-score is not symmetric since the overdensity field is lower bounded by −1.

Fig. 2 shows a quantitative comparison between the summary statistics of the true DM fields and
those of the generated ones. We find good statistical agreement between the true DM field and
the sampled DM fields, both in density histogram (the left panel) and in the clustering of the DM
fields (the middle panel). The right panel compares the statistics of the cross-correlations. The
cross-correlations between the sampled and true DM fields are always higher than 0.8; the large-scale
cross-correlation is as expected larger than that on small scales, but it is overall very well reproduced
by the diffusion model samples.
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Figure 2: Summary statistics of the stellar and DM density field at the fiducial parameters. Left panel:
density histogram of stars (copper), true DM (solid purple lines) and DM inferred by the diffusion
model (light blue). Note that we show the 10-90th percentiles of 100 samples from the posterior
distribution. Middle panel: Power spectra for star, true DM and sampled DM fields. Right panel:
Cross correlations between i) stellar and DM density fields, for both true and inferred DM fields (the
brown line and shaded region), and ii) between true and sampled DM fields (the blue shaded region).

To demonstrate the model’s capability to marginalize over the range of cosmological and astrophysical
parameters we trained on, we test the model on the 1P set of CAMELS which varies one parameter
(from the fiducial value) at a time for each simulation. Fig. 3 shows samples from the diffusion
model when conditioned on stellar fields from simulations with varying strengths of supernovae (SN)
feedback ASN1.

In these simulations, higher ASN1 (stronger SN feedback) leads to significant regularization of
star formation and results in a lower stellar population compared to the scenario with lower ASN1

(weaker SN feedback), as evident from the stellar image and density histogram. However, within
both scenarios of strong and weak SN feedback, the diffusion model is able to predict the underlying
DM field from the given stellar field that well resembles the ground truth DM distribution both
visually and on a statistical basis. This exhibits the capability of the diffusion model to predict the
DM distribution from biased tracers of galaxies produced from different astrophysical scenarios.
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Figure 3: 1st and 2nd panels: Illustrations of the DM maps generated from stellar fields from two
simulations of different SN wind strength (low ASN1 for the first panel and high ASN1 for the second
panel). The red panels show the respective true DM maps for comparison. 3rd panel: Histogram of
the stellar density (top) and generated DM density (bottom) for the simulations run with SN strengths
of low, fiducial and high values. The shaded regions show the 10-90th percentiles based on 100
generated samples for each of the input stellar maps.
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Figure 4: Summary statistics of the density fields when varying Ωm, ASN1 and AAGN1. The first
row shows a comparison of the density field PDFs. The second row shows the power spectrum ratio
between the sampled fields and the true DM distribution. The solid lines in the top panel give the
true DM distributions from simulations, while the shaded regions correspond to 10-90th percentiles
based on 100 generated DM samples from the input stellar fields. Note that the dark matter projected
density distribution does not vary noticeably with the astrophysical parameters ASN1 and AAGN1,
and the two solid lines overlap.

Fig. 4 shows a quantitative comparison between the generated DM density fields and the true ones
based on the 1P set simulations that separately vary the parameters Ωm, ASN1 and AAGN1. The DM
distribution is clearly sensitive to the cosmological parameter Ωm. We can see that the model is able
to predict systematically lower (higher) DM distribution for the low (large) Ωm scenario, exhibiting
the potential to generalize the DM predictions across varying cosmological assumptions. However,
the model struggles to generalize for low Ωm values, predicting the DM power with amplitude
larger than expected, albeit showing larger uncertainties in the samples. Similarly, the model also
overpredicts the DM power for the low ASN1 scenarios. Improving the capacity of the model to
generalize over the entire parameter space will be the subject of future work.

By comparing the dark matter power spectrum, we find that the predicted and observed DM fields
exhibit a broad level of agreement, with a deviation of approximately 20%, although the uncertainty
in the diffusion model is large enough for the true DM field to not be anomalous. The consistency of
the power spectrum with varied cosmological and astrophysical assumptions demonstrates that the
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trained model can well capture the clustering properties of the underlying DM fields based on the
stellar fields, while marginalizing over the cosmological and astrophysical parameters.

4 Conclusions and Outlook

We have presented a diffusion generative model that can sample the posterior distribution of dark
matter density fields conditioned on observable stellar maps. Previous deep learning approaches used
regression-based frameworks, but we show that a generative model can be used to turn this mapping
into a probabilistic one and capture the inherent uncertainty of the model due to lacking information
in the stellar maps. The diffusion model can generate DM density fields with summary statistics and
visual inspections consistent to those in the authentic simulations. This consistency persists even
when stellar maps are changed notably by variations in parameters controlling the SN and AGN
feedback, illustrating the model’s capacity to effectively marginalize over astrophysical uncertainties.
Our future work will extend the current framework to 3D density fields for an application to galaxy
surveys and explore how additional information, such as galaxy velocities, luminosities and colors,
can be folded in to better constrain the DM density field.

5 Code Availability

Our code is publicly available at https://github.com/cfpark00/vdm4cdm
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6 Supplementary Material

6.1 Statistical analysis of the sampled fields

We illustrate some more statistical properties of the sampled DM fields in Figure 5. We show the
variance of the power spectrum due to cosmic variance and due to sampling the conditional posterior
distribution described by the diffusion model. The latter is only bigger at the smallest scales. The
results are within the expected level of variance from the ground truth DM fields. We show that the
GT DM power spectrum is statistically consistent with the mean of the distribution of the sampled
DM field’s power spectra, and the absolute mean of the Z-score is also order of unity. Finally, we find
that the pixels with non-zero stellar mass form a distinct branch (shown in red) in the joint distribution
of the posterior mean and variance values. Thus, the variance is the biggest in the pixel where there is
non-zero but small underlying stellar mass.

6.2 Illustrations of the diffusion process

We show the diffusion process generating DM fields conditioned on stellar mass fields in Figure
6. Visually, we find that most of the structure forms between steps 80 and 160 when discretizing
t = [0, 1] into 250 steps and a learned noise schedule of γ(t) = 18.347 t − 7.202. We hope to
investigate if there could be a better noise scheduling for our task which can improve the results.

In Figure 7, we show for 4 input stellar mass fields the evolution of the power spectrum in the diffusion
process. The diffusion process seems to produce the large scale features first before completing the
small scales.

6.3 Compute Time

We used a single NVIDIA A100 40 GB GPU for training and evaluation. With a batch size of 12,
each training step took ∼ 0.2 s and sampling a batch of images with 250 steps took 8.4 s.
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Figure 5: Statistics on 500 samples generated from an input stellar mass map from the CV (Cosmic
Variance) set. This set of simulations have the same fiducial parameters but a different initial condition.
Top left: Cosmic Variance of GT Dark Matter fields and variance from Cosmic Variance and diffusion
seed of the generated samples. Top right: Hotelling’s T-test with a diagonal covariance assumption
shows that, for a single sample, the GT Dark Matter’s power spectrum is consistent with the mean
power spectrum of the samples. Bottom left: The Z-score distribution of a single GT Dark Matter
field with respect to the per-pixel posterior mean and variance of generated samples. Bottom right:
Joint distribution of the posterior mean and variance of the DM field for a single conditioning stellar
mass field. Pixels corresponding to a non-zero stellar mass fields are in red circles.

Figure 6: Input conditioning and sampled images at different steps of the diffusion process. Visually,
most of the structure are produced between steps 80 and 160.
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Figure 7: The evolution of the powerspectrum during the diffusion process. We show the powerspec-
trum of the DM field in different steps of the diffusion process for 4 randomly chosen stellar mass
inputs.
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