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Abstract

The complex events observed at the NOvA long-baseline neutrino oscillation ex-
periment contain vital information for understanding the most elusive particles in
the standard model. The NOvA detectors observe interactions of neutrinos from
the NuMI beam at Fermilab. Associating the particles produced in these interaction
events to their source particles, a process known as reconstruction, is critical for
accurately measuring key parameters of the standard model. Events may contain
several particles, each producing sparse high-dimensional spatial observations, and
current methods are limited to evaluating individual particles. To accurately label
these numerous, high-dimensional observations, we present a novel neural network
architecture that combines the spatial learning enabled by convolutions with the
contextual learning enabled by attention. This joint approach, TransformerCVN,
simultaneously classifies each event and reconstructs every individual particle’s
identity. TransformerCVN classifies events with 90% accuracy and improves the
reconstruction of individual particles by 6% over baseline methods which lack the
integrated architecture of TransformerCVN. In addition, this architecture enables
us to perform several interpretability studies which provide insights into the net-
work’s predictions and show that TransformerCVN discovers several fundamental
principles that stem from the standard model.

Introduction As machine learning becomes integral to physical sciences, the interpretability of
deep neural networks becomes increasingly significant. The surge in particle physics data demands
machine learning to extract meaningful results, and creating interpretable neural networks is essential
for generating insights from this data. We focus on a common problem in particle physics known as
reconstruction, which translates high-dimensional observations into more fundamental constructs.

Problem Statement NOvA [1], a long-baseline neutrino oscillation experiment using Fermilab’s
NuMI beam, comprises two liquid scintillator detectors 809km apart, which may be used to perform
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(a) Schematic of NOvA detector and generation
of top and side views from vertical and horizontal
planes respectively.

(b) Typical far detector event displays of νµ CC
(top), νe CC (middle), and NC (bottom) neutrino
interactions.

Figure 1: Visual representations of the input data at the NOvA Detector.

a 3D reconstruction of particle tracks. The NOvA experiment focuses on measuring neutrino
oscillations by observing the disappearance of νµ and appearance of νe at the far detector through
charged current interactions (Figure 1b). A previous oscillation analysis [2] used a Convolution
Visual Network (CVN) [3] to classify events into categories like νµ CC, νe CC, NC, and cosmogenic
background using 100 × 80 × 2 images, known as pixel-maps, from the detector centered around
the reconstructed event. Another network, ProngCVN [4], identifies individual particles, using both
the complete event image and an image containing only a individual particle’s energy deposition
according to NOvA’s reconstruction. We provide an overview of other related work in Appendix A.

Claims We introduce a hybrid convolution and transformer-based architecture known as Trans-
formerCVN (T-CVN) that makes use of NOvA’s existing particle reconstruction to simultaneously
process all particles within an event in a single network. This joint input scheme makes it possible
to used contextual information to improve prong reconstruction and to describe the topological
features of a particle’s track that leads to its classification and to analyze the relative impact of each
reconstructed particle on the overall event classification.

Transformer CVN We combine Sparse CNNs with Transformers in order to address both the
pixel-map sparsity and the variable prong counts in each event. We introduce TransformerCVN,
which embeds the sparse images into a dense latent space using Minkowski sparse CNNs [5] before
processing the the embeddings with transformer encoders [6] to include contextual information. The
individual prong pixel-maps are associated their respective particle labels while the event pixel-map
is associated with an overall neutrino interaction type.

Sparse CNN Architecture We employ a DenseNet-based architecture [7] for pixel-map embedding
which includes weighted skip connections between all CNN layers to counteract network activation
decay from input sparsity. We replace standard convolution and pooling in DenseNet with sparse
variants of these operations [5] which only compute convolutions for non-zero center pixels and not
introducing new non-zero values between these operations [8]. We use one instance of this CNN
to embed prong pixel-maps, sharing weights among prongs, while a distinct event CNN processes
the event pixel-map. Each 100× 80× 2 pixel-map is then transformed into an embedded pixel-map
latent vector who’s dimensionality determined by a hyperparameter. These CNNs form the network’s
initial stage as depicted in Figure 2.

Transformer Architecture We process the embedded pixel-maps with a transformer encoder [6]
to allow contextual information to be shared between prongs. Both prong and event embedded
pixel-map are encoded using a single, shared transformer encoder stack, visible in Figure 2. This
transformer encoder follows the canonical formulation [6], with one major exception. We elect
to not add position embeddings to our latent pixel-maps to avoid imposing an inherent order over
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Figure 2: A complete diagram of Sparse Transformer CVN, including example pixel-maps from a νµ
event with the event pixel-map path is highlighted in red.

pixel-maps; and, instead, simply add a type embedding to differentiate prong and event pixel-map by
concatenating the embeddings with one of two trainable context vectors.

Classification Outputs After embedding and encoding the event and prong pixel-maps, the encoded
vectors are fed through feed-forward networks to produce the final reconstruction predictions. We
employ a unified weight-sharing network for all prong reconstructions, and a distinct network for
event classification. The prong networks yield softmax distributions for 9 possible prong targets
(detailed in ) for each input prong. Meanwhile, the event network generates a softmax distribution
over 10 possible interaction types, which can be condensed to represent four main event types during
inference.

Training We train both the prong reconstructions and event classifications with categorical log-
likelihood losses across all event and prong pixel-maps. Given the multiple classification targets per
event and an imbalanced target distribution, we incorporate a focal loss [9] term to amplify weights
on under-performing events. This addition enhances accuracy for secondary, non-leptonic prongs.
Training specifics and hyperparameters are detailed in Appendix B. These values were selected after
tuning on the architecture via Bayesian Optimization search as part of SHERPA [10], maximizing the
average of event and prong accuracy.

Dataset We trained TransformerCVN on neutrino interaction simulations within the NOvA far
detector, splitting the simulated events equally between the unoscillated predominantly νµ beam and
νe oscillated events. The simulations employed GENIE [11] for neutrino-nucleus interactions and
GEANT4 [12] for detector simulations, overlaying neutrino actions on real cosmogenic background
data. The dataset derives from NOvA’s 5th Monte-Carlo simulation run in 2020 [13]. Training
followed the pre-selection criteria used in NOvA’s prior EventCVN analysis, inclusive of cosmic ray
rejection and a transverse momentum fraction cut [2]. We partitioned data into 6, 316, 264 training
events, 332, 434 validation events for hyper-parameter tuning, and 177, 084 testing events for model
evaluation. Events had a median of 2 prongs, with 90% having 1-6 prongs, leading us to limit training
events to the 10 highest-energy prongs for storage efficiency.

Event Classification Event classification targets where assigned to be one of 10 possible labels
Tevent = {νµ CC QE, νµ CC Res, νµ CC DIS, νµ CC Other, νe CC QE, νe CC Res, νe CC DIS, νe CC
Other, NC, CB} where QE is quasi-elastic scattering, Res is the resonant interaction, and DIS is deep
inelastic scattering, NC is neutral current events, and CB is the cosmic ray background. However,
we find that the network cannot effectively separate charged current events based on their interaction
type. We follow the EventCVN [3] baseline and collapse the event labels into these four basic classes
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Metric T-CVN EventCVN
Accuracy 0.894 0.897
Precision 0.894 0.908

Recall 0.894 0.897
ROC AUC 0.982 0.984

Table 1: Event reconstruction aggregated
metrics

Metric T-CVN Prong CVN
Accuracy 0.783 0.726
Precision 0.783 0.760

Recall 0.783 0.726
ROC AUC 0.951 0.932

Table 2: Prong reconstruction aggre-
gated metrics.

for evaluation: TEventCV N = {νe, νµ, NC,CB}. Background events originally overwhelmingly
dominated the training dataset, so we down-sample CB events to bring the distribution of event
targets to be roughly uniform between the three signal classes and limit CB to only 10% of the
training dataset.

Prong Reconstruction Prong reconstruction targets were assigned from the possible set of
Tprong = {e, µ, p, γn, π±, γπ0 , γother, OP,CB}. In an attempt to identify neutrons and neutral
pions, which do not deposit energy in the scintillator, the photon class was split into {γn, γπ0 , γother}
where γπ0 refers to a photon with a mother π0. Prongs produced in neutrino interactions correspond-
ing to particles other than the above classes where given the other prong, OP , class. Prongs from
data cosmic ray tracks do not have truth information and so were given the CB class.

Performance We assessed TransformerCVN’s baseline performance on event and prong recon-
struction, presenting average metrics in Tables 1 and 2. Metrics were averaged using a one-versus-one
approach with re-weighted balanced classes. Confusion matrices for both reconstructions are shown
in Figures 13 and 17. Event classification achieves high accuracy of nearly 90 % with some confusion
distinguishing νe from NC events. Prong reconstruction shows similar promise, although Protons
were frequently classified, often confused with photons. We also notice that the mother-particle
sub-classes are challenging to separate and are often confused for each other.

Comparison to EventCVN Event classification performance was near identical to the NOvA
EventCVN, but TransformerCVN demonstrated more balanced predictions with matching precision
and recall scores. Both of these models went through extensive hyper-parameter tuning and iterations
and achieve similar event performance with substantially different architectures. We therefore
hypothesize that both models seem to be at peak performance for the dataset and additional features
or resolution will be necessary to improve event classification.

Comparison to ProngCVN TransformerCVN exhibited marked improvements in prong recon-
struction. The additional context stemming from the attention mechanism boosted prong AUC for
major particle types over the ProngCVN. We noted a 0.02 rise in average AUC and a near 5% hike in
reconstruction accuracy. The most notable enhancement was in lepton prong reconstruction, where
the µ prong AUC improved from 0.864 to 0.975 (Figure 12).

Interpretability Deep neural networks are often dubbed black boxes due to their opaque decision-
making processes which pose challenges in understanding their predictions. However, the unified
TransformerCVN architecture can shed some light on this black box. Examining the learned attention
mechanism offers insights into relationships between different particles and event types. Additionally,
by reverse-engineering the CNN’s learned spatial structures, we gain an understanding of how the
network distinguishes between particles. Through these interpretability studies, we find evidence
suggesting the network learns several known principles from the standard model.

Prong Attention Maps Attention-based networks let us visualize the attention weights for each
input, indicating the significance of each input to the output. Though individual attention weights
can be noisy and difficult to interpret, aggregating them over multiple events yields clearer insights.
Each prong is categorized by its truth labels with event pixel-maps treated as pseudo-prongs. We
average the logit-attention scores for every prong type to estimate pair-wise significance of each type
for reconstruction. Our results, presented in Figure 4, display a primarily diagonal pattern, but we
notice event pixel-map inputs show higher attention scores. A detailed overview of this method is
presented in Appendix C.
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(a) Integrated salience map demonstrating the trace
profile of different prong types.
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Figure 3: Aggregated Interpretation plots.

Event Attention Maps We analyze event attention scores using a similar aggregation technique,
aggregating scores by the true event label instead of the prong type. Displayed in Figure 3b, we
observe that leptons unique to the charged current interaction types significantly influence event-level
predictions, such as elections for νe CC and muons for νµ CC.

Saliency Maps Saliency maps [14] help interpret convolution networks’ learned behavior by
highlighting the sensitivity of a network’s output to each input pixel. These maps illustrate how a
slight change in input pixel intensity affects the output. We generated saliency maps for all prong
and event outputs concerning their input pixel-maps. However, like attention maps, individual event
saliency are noisy due to input sparsity. To derive clear insights, we aggregated saliency maps across
events, detailed in Appendix E. We present a grid showcasing saliency maps for five key prong
particle labels 5. Diagonal maps highlight the saliency for each particle’s associated output, while
off-diagonal maps display areas most influencing predictions towards the Positive Particle label over
the Negative Particle. One would expect that muons are the easiest to visually identify from the other
particle classes considered here due to their tendency to leave tracks rather than showers. It is clear
from the muon rows that hits near the vertex make the network more likely to classify the prong as a
muon track as opposed the shower of a showering particle. µ/γ separation presents an interesting
example where hits at large angles from the prong direction as opposed to hits along the direction
vector far from the vertex make γ classification more likely. γ separation from e usually relies on a
predicted gap between the vertex and the start of the photon’s shower. Hits far the vertex therefore
contribute more to γ classification. However, the e/γ separation plots appear more isotropic than
µ/γ or µ/e plots, likely because both types of particles are expected to shower.

Integrated Saliency Maps We may also compare the track profile between the different classes
by integrating the saliency maps presented above across the width of the detector to produce one-
dimensional saliency with respect to vertex distance along the track (Figure 3a). This provides the
average "pattern" we expect every prong type to form and indicates the most important regions for
each prong class. We again notice that, as expected from theory, the muon track extends further than
the other prong types, remaining flat for the middle third of the track. We also notice the delayed hit
expected from γ tracks when compared to e.

Conclusion We present a novel neural network architecture for event reconstruction at NOvA. By
combining the spatial correlation learning of sparse convolution networks with the contextual learning
of transformers, we present a method for simultaneously reconstructing both individual prong labels
as well as an overall event classification. This combined approach improves reconstruction accuracy
over baseline methods while also providing many novel methods for interpreting the network’s
reasoning behind individual reconstructions. The black-box nature of neural networks is often an
uneasy aspect of deep learning models, we a method for "opening the black box" provides a method
for increasing trust in the network’s predictions and guides our understanding of the underlying
physics. Interpretable networks are critical for not just improving current physics experiments, but
for guiding our understanding in designing new experiments.
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A Related Work

A.1 Attention and Set Classification

Several problems in Physics may be reduced to assigning classification labels to a collection of
unordered objects, or a set. In the case of NOvA event reconstruction, we are interested in classifying
both the underlying event as well as reconstructing the label of each individual prong. Each event may
contain multiple prongs, with no inherent order to them. Therefore, the prong observations and targets
define variable length sets and we may generalize the prong reconstruction task to classification over
these sets.

There have recently been several developments in using attention-based methods to handle variable-
length sets [15, 16, 17]. Attention provides a gating mechanism for modifying neural network
activations by incorporating contextual information [18], achieving state-of-the-art results in natural
language processing problems such as translation [19, 20, 21, 22], where variable-length sequences
are common. Among these methods, transformers [6] stand out as particularly promising for set
assignment due to their fundamental permutation invariance [15]. Transformers are especially
effective at modeling variable-length sets because they can learn combinatorial relationships between
set elements in polynomial time [16].

A.2 Sparse Convolutions

The scintillator pixel-maps produced by the NOvA detector present several unique challenges for
machine learning. These pixel-maps are typically very sparse, with with events having, on average,
0.84% of pixels containing non-zero hit values, leaving most of the observations void of data.
Convolution neural networks (CNNs) are ubiquitous element of deep learning methods for efficiently
learning on image and other spatially-related collections of data [23]. This effectiveness stems from
the extreme weight sharing that comes with using a small kernel matrix which is applied everywhere
across space.

However, CNNs falter when dealing with sparse images since small kernels may contain very little
data, and extremely large kernels would eliminate the benefits of weight sharing. To combat this,
the spatial kernel concept has been expanded apply to sparsely distributed data, proving especially
successful in 3D objective reconstruction [8, 5]. These apply the convolution operations only in
regions where data exists, saving on computation and preventing the dilution of sparse values even in
a predominantly zero valued image.

A.3 Interpretable Deep Learning

The black-box nature of deep neural network models stems from our inability to analytically describe
the training and inference processes in all but the most simple neural networks [24]. There has
recently been a surge in methods for analyzing specific aspects of neural network architectures to
extract human-understandable measurements from their internal structures. Saliency maps [14]
provide a method for analyzing the behaviour of CNNs by studying the model’s output gradients
with respect to the inputs and provide a very visual understanding of the network’s behaviour near
individual inputs. Similarly, transformers may be analyzed by instead focusing on the attention
matrices computed during self-attention [6, 25, 21]. These attention maps measure the importance of
different inputs, for example individual words in a language model, for determining the output of a
transformer.

B Hyperparameters

We present a full list of hyperaprameters used to define the network. The CNN follows the DenseNet
architecture [7] with a modified number of blocks and embedding dimensions. The prong transformer
follows the canonical transformer encoder [6] architecture. We used a focal classification loss [9] with
a chosen focal γ parameter. AdamW [26] and cosine annealing with warm restarts [27] with canonical
parameters are used for training the network. The AdamW optimizer along with warm-restarts has
shown success on both vision [28, 29] and NLP [30] tasks with transformers. We replicate this setup
in our experiments. Training was performed on 4 NVidia 3090 GPUs, splitting a batch size 2048
events between the GPUs.
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We optimize the hyperparameters of our neural network using the Sherpa hyperparameter optimization
framework [10]. We use Bayesian Optimization with a Gaussian Process surrogate to guide the
hyperparameter search process over 10, 000 short training trials.

Parameter Value
CNN Embedding Dimensions 512
CNN DenseNet Blocks 5
Transformer Dimensions 256
Transformer Encoders 6
Type Embedding Dimensions 32
Focal Loss γ 1.0
AdamW Learning Rate 1× 10−5

AdamW Weight Decay 2× 10−5

Cosine Annealing Epochs 1024
Cosine Annealing Cycles 16

Table 3: Caption

C Total Attention Extraction

We present a method for extracting the overall attention for a single event by aggregating the attention
weights of individual transformer layer.

Let E ∈ R(N+1)×D be a set of embedded pixel-maps where N is the number of prongs in the event
and D is the latent dimensionality. Every transformer layer, Ti, in a K-layer transformer encoder
produces a pair-wise importance score for all of the input pixel-maps: Ai ∈ R(N+1)×(N+1). We may
compute a total attention score for a single event by taking the product of these importance matrices
across the entire transformer encoder.

A = AKAK−1 . . . A2A1I

This produces a single (N+1)×(N+1) matrix who’s rows all sum to one. We note that high attention
values does not indicate correlation with predicting the given output, but rather the importance for
separating different classifications.
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D Attention Maps
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Figure 6: An Alternative aggregation method for attention matrices which just look at how each
individual prong contributes to the attention score of prongs and events. This includes a downside in
that prongs which appear more than once in events, such as photons, will be underrepresented since
their attention will be split among other prongs with the same type. However, this does provide a more
low-level view of the importance of different prongs in different classification and reconstruction
tasks.

E Saliency Aggregation

We need to aggregate the individual event saliency to extract global pixel-maps with patterns identify-
ing common areas of interest for the network. We perform this aggregation in several steps.

1. Compute the saliency of every output head for several blurred, noisy variations of each
prong. We add a small uniform random noise to pixel-maps to robustly estimate the gradient
near a given input, followed by a Gaussian blur with a standard deviation of 1 pixel to
smooth out the discrete nature of our pixel-maps. We average the saliency across these noisy
blurred inputs to provide a smooth gradient estimates. This produces 9 saliency maps for
every prong, one for each prong label.

2. Translate and rotate each saliency map to align each prong’s vertex (the initial location of
the hit) to the top center of each map and the prong’s track (the decay tail) along the vertical
axis. We use vertex and direction information from the simulator’s particle reconstruction,
included in the NOvA MC data release.

3. Enforce a similar distribution for every prong type by limiting events to only those where
the track length is less than 50 pixels (488 cm) and the reconstructed particle energy is less
than 4 GeV. We do this to focus on the differentiation of similar-looking prongs, providing
hints to subtle differences between different prong types instead of obvious overarching
differences.

4. Average the resulting smoothed and rotated saliency maps for every type of prong to compute
the gradient with respect to deflection way from the vertex for each prong type.

F Saliency Pixel Maps

In Figure 7, we present both types of saliency Pixel-maps. We first present the saliency aggregated
across all events for every output of the network. We then present the saliency for only those events
where the true prong type matched the positive (row) output.
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(a) All prongs examined in every saliency map.
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(b) Each row only contains prongs who’s truth label
matches the positive particle for the given row.

Figure 7: Grid of aggregated saliency maps and difference maps for every pair of prong types. Red
indicates a positive correlation with the Positive Particle’s reconstruction probability, while blue
represents a negative correlation.
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(a) Flat weighted integrated salience
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(b) Gaussian weighted integrated salience.

Figure 8: Full length views of the integrated salience maps along particle tracks which include the
outer regions of the track. We additionally include a Gaussian-Weighted variant which puts more
importance to salience near the particle’s track. We re-weighting the salience maps with a Gaussian
weight with respect to distance from the track’s center before integrating the maps along their width.

H Signal-Background Rejection

We can also use the softmax distribution outputs from both the event and prong network outputs as a
method for cutting non-signal events from the NOvA data. To examine the effectiveness of this cut,
we plot a histogram of the network’s softmax probability of assigning a given classification for every
event or prong, grouped by their ground truth values. These plots are presented in Figures 9 and 10.
We notice that all of the major events and prongs achieve an order of magnitude signal-background
cut after a classification probability of 0.8 while still keeping a majority of the signal data with a cut
up to 0.9.
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Figure 9: Event signal-background rejection curves for different Event Types. Calculated as the
TransformerCVN’s likelihood of classifying a particular signal event as one of the background classes.

14



0.0 0.2 0.4 0.6 0.8 1.0
Transformer e Prong Score

100

101101

102102

103103

104104

105

E
ve

nt
s

e Signal

µ Background

p Background

π± Background

(a) TransformerCVN e Prong Softmax Scores

0.0 0.2 0.4 0.6 0.8 1.0
Transformer µ Prong Score

100

101101

102102

103103

104104

105

E
ve

nt
s

µ Signal

e Background

p Background

π± Background

(b) TransformerCVN µ Prong Softmax Scores

Figure 10: Prong signal-background rejection curves for lepton prongs. Equivalent computation as
the event signal-background curves, but performed with the four most common types of prongs.
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(a) ROC Curve for νe event reconstruction.
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(b) ROC Curve for νµ event reconstruction.

Figure 11: Event classification ROC curves for TransformerCVN and EventCVN Baseline.
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(b) ROC Curve for µ prong reconstruction.

Figure 12: Lepton Prong Reconstruction ROC curves for TransformerCVN and ProngCVN Baseline.
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Figure 13: TransformerCVN 4 Class Event Confusion Matrices.
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Figure 14: EventCVN Baseline 4 Class Event Confusion Matrices.
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Figure 15: TransformerCVN 5-class Prong Confusion Matrices.
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Figure 16: ProngCVN Baseline 5-class Prong Confusion Matrices.
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Figure 17: TransformerCVN Full 9-class Prong Confusion Matrices.
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Figure 18: An Example pixel-map for a νµ CC event. Potential neutrino interaction events are split
into clusters of energy deposits called "slices." These slices are cropped such that the first cell hit
along the beam direction is placed in the first column along the z-axis and the hits are centered along
the x or y direction. The pixel map is then generated by filling each pixel with a value between 0 and
255 proportional to the cell’s energy deposit with saturation at 278 MeV.
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