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Abstract

We present principled Bayesian model comparison through simulation-based neural
classification applied to SN Ia analysis. We validate our approach on realistically
simulated SN Ia light curve data, demonstrating its ability to recover posterior
model probabilities while marginalizing over > 4000 latent variables. The amor-
tized nature of our technique allows us to explore the dependence of Bayes factors
on the true parameters of simulated data, demonstrating Occam’s razor for nested
models. When applied to a sample of 86 low-redshift SNæ Ia from the Carnegie
Supernova Project, our method prefers a model with a single dust law and no mag-
nitude step with host mass, disfavouring different dust laws for low- and high-mass
hosts with odds in excess of 100:1.

1 Introduction

Classification problems are a quintessential machine learning task, just as hypothesis testing is at the
heart of science. Bayesian model selection improves upon traditional frequentist tests by implement-
ing an automatic quantitative version of Occam’s razor (the principle that “simple” models ought to
be preferred [1]). Traditionally, calculating Bayesian model evidences has required performing an
integral over the model’s whole parameter space, which quickly becomes intractable when analysing
large data sets with complicated Bayesian hierarchical models (BHMs).

Neural simulation-based inference (SBI)1 is a relatively recent alternative approach to Bayesian
inference that is rapidly gaining popularity in the physical sciences due to its scalability to large data
sets and ability to include realistic models. The keystone of SBI is the use of a stochastic simulator
able to produce mock data, incorporating arbitrarily complex physical effects difficult to model in
likelihood-based pipelines. A neural network (NN) trained on the simulated examples is then used
for inference in place of explicit likelihood evaluations. NNs are quick to train via gradient descent,
easy to deploy on modern high-performance computing hardware like graphics processing units
(GPUs), and allow SBI practitioners to exploit the rapid development in the field of deep learning.
Furthermore, amortised inference enables both validation of the approximate posteriors [4–6] as well
as the constructions of confidence regions with guaranteed frequentist coverage [7, 8].

Here, we combine the power of SBI with the elegance of Bayesian model selection to perform
principled analysis of a BHM with thousands of latent variables. We address the controversial topic of

1See [2, 3] for overviews and https://simulation-based-inference.org/ and https://github.
com/smsharma/awesome-neural-sbi for references to software and applications.
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the possible existence of a “magnitude step” [9, 10] in type Ia supernovæ (SNæ Ia)—standardisable
candles that enabled the discovery of the accelerated expansion of the Universe [11–13]—an intrinsic
difference in magnitude correlated with the mass of their host galaxies, and its interplay with the host
dust properties: see the references in [14] and [15, hereafter TM22], on which we base our modelling.
So far, the problem has been plagued by an inability to treat all considered effects self-consistently
due to the limitations of likelihood-based analyses, which are lifted by SBI.

2 Simulation-based model selection

Bayesian model selection assigns posterior probabilities p(Mk |d) to models Mk ∈
{M1, . . . ,MN} (instead of to values of their parameters θk), conditional on observed data d.
The conventional approach is to compute the marginal likelihood (or evidence) p(d | Mk), which is
the average likelihood p(d |θk) of parameters distributed according to the prior p(θk):

p(d | Mk) =

∫
p(d |θk) p(θk) dθk (1)

(where the presence of Mk’s parameters θk implies conditioning on Mk in the right-hand side).
The prior belief in the model, p(Mk), is then updated to its posterior probability in accordance with
Bayes’ theorem: p(Mk |d) ∝ p(d | Mk) p(Mk), normalised over all models considered.

As pointed out by Jeffrey & Wandelt [16], this has two disadvantages: first, it might be unclear what
exactly the complete set of model parameters is, in what space they are defined (there are models
with varying numbers of parameters: see e.g. trans-dimensional Monte Carlo [17]), and what their
likelihood is. For example, in cosmology, so-called selection effects arise when the probability of
detecting an object and including it in the analysed sample depends on the very parameters of interest.
Even when the integral in eq. (1) is well defined, it is usually computationally prohibitive to evaluate
for high-dimensional parameter spaces: variants of nested sampling, the de facto standard technique
for the task, typically only scale up to a few hundreds of parameters [see e.g. 18, 19, for reviews], far
from the millions required for contemporary cosmological data sets.2

Marginal simulation-based inference circumvents both issues since the simulator abstracts latent
parameters from the inference procedure altogether: latent stochastic variables sampled during a
forward run are implicitly marginalised. For the purpose of Bayesian parameter estimation, the
NN can be trained to approximate either the likelihood, the posterior, or the likelihood-to-evidence
ratio. The latter approach, called neural ratio estimation (NRE), recasts the inference task into
a classification problem between pairs θ,d ∼ p(θ,d) versus θ,d ∼ p(θ) p(d) and uses the
classification probability to derive the posterior over model parameters θ. NRE is founded on the
well-known principle that, in order to minimise the Bayesian risk of misclassification, a classifier
must base its decision on the ratio of the densities of the examples it has been trained on [see e.g.
21], implying that if the classes represent data simulated according to the different models being
compared (in proportion to the model priors p(Mk)), the NN learns their posterior probabilities.

The ratio estimator used in NRE is usually trained to minimise the binary cross-entropy (BCE) loss
[see e.g. 4] used for binary classification. In machine learning applications, the case is ubiquitously
extended to multiple classes via the multi-class cross-entropy loss, whereby the neural network
outputs one real number for each model considered: {x1, . . . , xN}; these are then normalised via the
softmax function: yk = exp(xk)/

∑
j exp(xj). Training a sufficiently expressive neural network to

maximise the entry corresponding to the true model leads to it outputting (after the normalisation) the
posterior probabilities of the models.

Related work. In the field of SN Ia analysis, SBI has focused on marginal parameter inference: of
cosmological parameters by using summary statistics derived in likelihood-based fits to light curves
[7, 22–26], and of the properties of an individual object from its raw light curve [27].

A number of studies have addressed simulation-based Bayesian model selection in general. Jeffrey &
Wandelt [16] focused on loss functions for two-way model comparison with an emphasis on recover-
ing accurate extreme Bayes factors. Radev et al. [28] proposed estimating a Dirichlet distribution
over an arbitrary number of models using a NN and variational optimisation, while Elsemüller et al.
[29] advocated in favour of a cross-entropy loss, which we use in this work.

2With the exception perhaps of proximal nested sampling, which scales to millions-dimensional models [20].
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3 Application to SN Ia analysis: magnitude step and dust laws

The data we analyse are light curves (collections of calibrated flux measurements in different
passbands and at different times) of the 86 low-redshift SNæ Ia from the Carnegie Supernova Project
(CSP) [30] previously investigated by TM22 with a likelihood-based BHM, which we re-implement
as a forward simulator. We fix the principal components of the SN Ia spectral time series to those
inferred by Mandel et al. [31] and sample the remaining model parameters (including intrinsic light
curve variations and dust optical depth) from their respective priors (the NN implicitly marginalises
them for the purposes of model comparison) and implement 6 models whose posterior probabilities
we wish to evaluate:

• the possible existence of an intrinsic magnitude step between SNæ in low- and high-mass
hosts, such that the magnitude scatter follows N

(
∆M,σ2

0

)
for SNæ in high-mass galaxies

(log10(M∗/M⊙) > 10.5), and N
(
0, σ2

0

)
otherwise3; we place a uniform hyperprior ∆M ∼

U(−0.2, 0.2) and a broad hyperprior on σ0 as in Mandel et al. [31]); we label with “dM” (“M0”)
the model with (without) a magnitude step, so that dM → M0 when ∆M → 0;

• the population of host dust parameters Rs
V (which in all cases are restricted to the range [0.5, 6] as

in TM22), describing the wavelength dependency of dust absorption in the Fitzpatrick law [32]:

• a “global” dust model, the simplest among them, has Rs
V = µR, i.e. all SNæ are subject to

the same dust law (albeit with individual optical depth described by As
V );

• a “local” dust model, assuming a hierarchical relationship Rs
V ∼ N

(
µR, σ

2
R

)
, i.e. a single

population of dust; “local” → “global” when σR → 0;
• a “split” dust model, with two independent distributions of Rs

V for high- and low-mass

hosts: Rs
V ∼ N

(
µlow
R , (σlow

R )2
)

or N
(
µhigh
R , (σhigh

R )2
)

, such that “split” → “local” when

(·)low → (·)high.

We use the same priors on global dust parameters as in TM22, a fixed mass split location at
log10(M∗/M⊙) = 10.5 (resulting in a 49/37 split), and stellar masses M∗ as included in SNANA
[33], ignoring stellar mass uncertainty (see [34]).

We fix the SN cosmological redshifts (after peculiar velocity corrections [35]) and the cosmological
model to that used in TM22: a flat ΛCDM with Ωm0 = 0.28 and H0 = 73.24 km/s/Mpc (and SN Ia
absolute magnitude M0 = −19.5). Overall, our models have 47 parameters per SN (42 of them
describing the residual correlated light curve variability) for a total of more than 4000 for the analysed
data set with 86 SNæ Ia. For comparison, current state-of-the-art compilations of about 2000 SNæ Ia
[36] would require ∼105 latent variables.
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Figure 1: Reliability diagram for the
trained classifier network.

The neural network we use is implemented in pytorch
[37] and is based solely on fully connected layers. Full
details about the architecture and training are given in ap-
pendix A. Before showing results on the real data set, we
validate the performance of the trained classifier using
a set {di} simulated from models {Mi} in proportion
to the prior model probabilities (in this case, in equal
amounts).

Calibration. We first plot the “reliability diagram”4

[38], which shows the fraction of examples that were
simulated from a given model versus the posterior proba-
bility of that model given the simulated data. To produce
fig. 1 we bin the validation examples according to the
network output for model k (i.e. the posterior probability
p(Mk |di)) and within each bin calculate the fraction
of examples that were actually simulated from model
k. The nearly diagonal lines we observe indicate good
calibration.

3Our ∆M has opposite sign to TM22: here, ∆M < 0 corresponds to brighter SNæ Ia in more massive hosts.
4Jeffrey & Wandelt [16] use the same diagnostic, calling it “blind coverage testing”.
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Figure 2: Evaluation of the trained classifier network on the validation set of simulations. Left:
Each row shows the posterior over models (as labelled above), averaged over a collection of data
simulated with the model indicated on the left. Right: log10 Bayes factors (evidence ratios) for
different simulated datasets as a function of the input parameters. For the µR–σR plot the compared
models are “local” and “global” (σR = 0), marginalising over ∆M , while for the ∆M–σ0 plot, the
models are “dM” and “M0” (∆M = 0), assuming a non-split Rs

V distribution (“local”). The solid
black lines indicate parameters leading on average to equal posterior odds.

Refinedness (in the sense of [38]). We show in fig. 2 (left) the average posterior probabilities for data
simulated with a given model. A refined classifier would assign the most probability to the “correct”
model, leading to a pronounced diagonal; but unlike in usual machine learning applications, Bayesian
model comparison assigns non-zero posterior probability to all models (i.e. non-zero off-diagonal
entries). The prominence of the diagonal, then, depends both on how powerful the data itself is in
distinguishing the models as well as on the parameters’ priors [1].

Owing to amortisation, we are able to explore Bayes factors (ratios of evidences) across a range
of ground-truth parameters of simulated data, which is computationally unfeasible with traditional
methods. Figure 2 (right), which compares nested models (“local” → “global” in µR–σR space and
dM → M0 in ∆M–σ0 space), clearly demonstrates Occam’s razor: data resulting from parameters
sufficiently close to the location of the nested model (σR = 0 or ∆M = 0) favour the simpler model
(yellow/red regions). We also observe that, naturally, a step in magnitudes is harder to detect when
their scatter (σ0) is larger. A scatter in Rs

V (i.e. σR > 0) is also harder to detect when µR is large
because, in that region, the effect on data is smaller due to the non-linear nature of the dust law.

Results from the CSP data set are presented in fig. 3 in terms of posterior model probabilities and
Bayes factors with respect to the most probable model: a global dust law and no magnitude step. Our
results follow Occam’s razor, with no clear preference for a mass step and a mildly disfavoured (by a
factor ≈2) spread of Rs

V . A split in the dust laws for low- and high-mass hosts is clearly disfavoured,
regardless of the magnitude step, with a Bayes factor of ≈100, contrary to the conclusions of both
Thorp & Mandel [15] and Brout & Scolnic [14].

In fig. 3, we also present posteriors (derived via NRE trained on the same simulations used for the
model comparison network), which support the conclusions of model comparison. In agreement
with TM22, we find a magnitude step of ∆M ≈ −0.05, and approximately 2σ away from 0, with
the results only mildly affected by the dust model. We find a larger value σ0 ≈ 0.2 (cf. ≈0.1 in
TM22) since this quantity in our analysis absorbs all residual variability present in the data, including
peculiar velocity uncertainties, which we do not model explicitly. All of the global dust parameter
posteriors are in good agreement with TM22, and we obtain similar posteriors when treating low-
and high-mass hosts separately as when we assume a single dust distribution (after marginalising
over ∆M in all cases). This justifies the “split” dust model being strongly disfavoured, due to its
larger prior volume.
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Figure 3: Posteriors from CSP data. Left: Models’ posterior probabilities (bottom) and (top) log10
Bayes factor with respect to the highest-ranked model (M0, global: no step, global dust law). Right:
Approximate marginal posteriors (1σ and 2σ) from NRE. The µR–σR plot compares the posteriors
for (·low, ·high) from the “split” model, with the result for a single dust-law distribution (“no split”).
The ∆M–σ0 plot compares posteriors from the same two models. The shaded strip is the 1-D 2σ
marginal ∆M posterior from the “split” model, in agreement with TM22 (2σ error bar above).

4 Conclusions

Enabled by neural SBI, we have performed Bayesian model comparison on an unsolved problem in
cosmology that requires realistic modelling of SN Ia light curves and marginalising over thousands of
latent variables. A demonstration of Occam’s razor, our results from low-redshift SN Ia data favour a
global dust law and no magnitude step (with 45% posterior probability up from 16.6% a priori). The
existence of a magnitude step or a distribution of Rs

V remain plausible (with posterior odds of ≈ 1 : 2),
while a split in global dust populations across log10 M∗/M⊙ = 10.5 is disfavoured with odds in
excess of 100:1. We emphasise, however, that Bayesian model comparison is always dependent on
the prior volumes considered. The scalability of our approach allows it to be applied to much larger
data sets than demonstrated here, both present and future, with even more sophisticated Bayesian
models (e.g. marginalising out the location of the mass split, accounting for stellar mass uncertainty),
and more realistic simulators (self-consistently estimating redshifts and peculiar velocities, including
selection effects and non-Ia contamination), ushering in the era of principled simulation-based fully
Bayesian SN Ia cosmology.
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A Neural network architecture and training

We use a neural network that consists entirely of fully connected linear layers followed by online
whitening (which shifts and rescales its inputs to have null mean and unit standard deviation) and
rectified linear unit (ReLU) non-linearities. Since the number of observations for each supernova
varies from one object to another, we use a bespoke linear layer RNs

obs → R256 to embed each SN in
a common-dimensional space. The embedding is processed by two more layers (shared among all
SNæ), resulting in a SN featurisation in R32. The resulting NSN = 86 feature vectors are flattened to
form a 86× 32 = 2752-dimensional representation of the whole data set, which is fed through three
additional layers leading finally to the 6 predicted class probabilities (unnormalised logits input into
a CrossEntropyLoss). We implement the network (detailed in table 1) in pytorch [37], using a
50% dropout [39] after the flattening layer. We train on a single Nvidia A-100 GPU using 96 000
examples from each of the 6 models (set to fit in the GPU memory) and a OneCycle learning rate
schedule [40]. Generating the training data and training until convergence (for about 100 000 steps)
took about 1 h each.

Table 1: Architecture of the neural network we use.

input shape: (
∑NSN

s=1 N
s
obs, ) WhitenOnline()

loop s ∈ 1, . . . , NSN Linear(Ns
obs, 256) WhitenOnline() ReLU()

Stack shape: NSN × (256, ) → (NSN, 256)

SNæ as
batch dim.

Linear(256, 256) WhitenOnline() ReLU()
Linear(256, 256) WhitenOnline() ReLU()
Linear(256, 32)

Flatten shape: (NSN, 32) → (NSN × 32, ) Dropout(0.5)

Linear(256, 256) WhitenOnline() ReLU()
Linear(256, 256) WhitenOnline() ReLU()
Linear(256, 256)

Linear(256, 6) classifier output (→ CrossEntropyLoss)
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